Navigation Links
Researchers discover way to transport environmental arsenic to plant leaves in new clean-up strategy

Environmental arsenic pollution is a serious and growing environmental problem, especially on the Indian subcontinent. Researchers at the University of Georgia had, several years ago, used genetic techniques to create "arsenic-eating" plants that could be planted on polluted sites.

There was a problem, however. The arsenic sequestered from soil remained largely in the roots of the plant, making it difficult to harvest for safe disposal. Now, the research team, led by geneticist Richard Meagher, has discovered a way to move the arsenic from roots to shoots. The payoff could be a new and effective tool in cleaning up thousands of sites where arsenic presents serious dangers to human health.

The research was just published in the Proceedings of the National Academy of Sciences (PNAS). Other authors of the paper include Om Parkash Dhankher and Elizabeth McKinney from the department of genetics at UGA and Barry Rosen of Wayne State University.

"High levels of arsenic in soil and drinking water have been reported around the world," said Meagher, "but the situation is worst in India and Bangladesh, where around 400 million people are at risk of arsenic poisoning. Unfortunately, the high cost of using excavation and reburial at these sites makes these technologies unacceptable for cleaning up the vast areas of the planet that need arsenic remediation. As a result, the overwhelming majority of arsenic-contaminated sites are not being cleaned up."

The problem is vast. The World Health Organization (WHO) predicts that long-term exposure to arsenic could reach epidemic proportions, the PNAS paper reports. The WHO says a staggering 1 in 10 people in northern India and Bangladesh may ultimately die of diseases resulting from arsenic-related poisoning.

The new strategy is part of what researchers call phytoremediation--the cleaning of polluted soils through the use of plants that sequester poisons, make them less harmful, and which can the n be harvested--and has the potential to be of use on millions of acres of arsenic-polluted lands worldwide.

In research reported in 2002 in Nature Biotechnology, Meagher's team inserted two unrelated genes from the bacterium E. coli called arsC and ECS into Arabidopsis, a model lab plant and small member of the mustard family. This allowed the plants to resist the toxic effects of arsenic and sequester three-fold more arsenic in their shoots than normal plants. Still this was too ineffective to allow planting of the transgenic plants on arsenic-polluted sites, since far more arsenic needed to be moved into the plant leaves for safe harvesting and disposal.

In the just-reported research, the team identified a single gene, ACR2, in the Arabidopsis genome as one that allows the plants to move sequestered arsenic in roots. By engineering plant lines with a silenced ACR2 gene, they discovered they could get 16-fold more arsenic in shoots than in natural wild-type Arabidopsis. This experiment identified the active mechanism for sequestering arsenic in roots.

"We want a 35- to 50-fold increase in these plants' ability to sequester arsenic," said Meagher, "and now that we understand the mechanism, we believe that is possible." Indeed, it appears possible to create arsenic-eaters among tree, shrub and even grass species, using the new knowledge.

The problem of arsenic pollution is especially severe all over the Ganges River basin in India. During the so-called "Green Revolution" of the '60s and '70s, the cultivation of rice in flooded fields became pervasive, and workers dug open wells all over India through soil and rocks with naturally occurring arsenic. The result was widespread arsenic pollution from contaminated water. The problem is thus extremely widespread and not the result of industrial accidents or practices.


Source:University of Georgia

Related biology news :

1. Researchers discover way to make cells in the eye sensitive to light
2. Researchers find how protein allows insects to detect and respond to pheromones
3. Researchers Uncover Key Step In Manufacture of Memory Protein
4. Researchers reveal the infectious impact of salmon farms on wild salmon
5. Researchers identify target for cancer drugs
6. Researchers discover molecule that causes secondary stroke
7. Researchers find missing genes of ancient organism
8. Researchers trace evolution to relatively simple genetic changes
9. Researchers add new tool to tumor-treatment arsenal
10. UF Researchers Map Bacterial Proteins That Cause Tooth Loss
11. VCU Researchers Identify Networks Of Genes Responding To Alcohol In The Brain
Post Your Comments:

(Date:6/1/2016)... , June 1, 2016 Favorable ... Election Administration and Criminal Identification to Boost Global Biometrics ... recently released TechSci Research report, " Global Biometrics Market ... Competition Forecast and Opportunities, 2011 - 2021", the global ... by 2021, on account of growing security concerns across ...
(Date:5/12/2016)... -- , a brand of Troubadour Research ... the Q1 wave of its quarterly wearables survey. A ... to a program where they would receive discounts for ... "We were surprised to see that so ... , CEO of Troubadour Research, "primarily because there are ...
(Date:4/28/2016)... 28, 2016 First quarter 2016:   ... compared with the first quarter of 2015 The gross ... M (loss: 18.8) and the operating margin was 40% (-13) ... Cash flow from operations was SEK 249.9 M (21.2) , ... is unchanged, SEK 7,000-8,500 M. The operating margin for ...
Breaking Biology News(10 mins):
(Date:6/24/2016)... , ... June 24, 2016 , ... While the majority ... as the Cary 5000 and the 6000i models are higher end machines that use ... height of the spectrophotometer’s light beam from the bottom of the cuvette holder. ...
(Date:6/23/2016)... (PRWEB) , ... June 23, 2016 , ... ... the release of its second eBook, “Clinical Trials Patient Recruitment and Retention Tips.” ... and retention in this eBook by providing practical tips, tools, and strategies for ...
(Date:6/23/2016)...   Boston Biomedical , an industry leader ... target cancer stemness pathways, announced that its lead ... Designation from the U.S. Food and Drug Administration ... gastroesophageal junction (GEJ) cancer. Napabucasin is an orally ... stemness pathways by targeting STAT3, and is currently ...
(Date:6/23/2016)... 23, 2016 A person commits a crime, and ... to track the criminal down. An outbreak of ... Drug Administration (FDA) uses DNA evidence to track down the ... Sound far-fetched? It,s not. The FDA has increasingly used a ... of foodborne illnesses. Put as simply as possible, whole genome ...
Breaking Biology Technology: