Navigation Links
Researchers discover key mechanism by which lethal viruses Ebola and Marburg cause disease

Researchers in the Greene Infectious Disease Laboratory at Columbia University's Mailman School of Public Health, the Centers for Disease Control and Prevention, and the Caribbean Primate Research Center have discovered a key mechanism by which the Filoviruses, Ebola and Marburg, cause disease. The identification of an amino acid sequence in Filoviruses that results in the rapid depression of immunological response is described in the December 2006 issue of The FASEB Journal. Using this information, researchers can begin to develop new drugs to stop these devastating diseases.

Filoviruses, named for their threadlike appearance in electron microscopy (filo= thread in Latin), are associated with outbreaks of fatal hemorrhagic fever in sub-Saharan Africa. Viral hemorrhagic fevers are of specific concern because they are associated with high morbidity and mortality (up to 80% mortality rates) and the potential for rapid dissemination through human-to-human transmission. The term "viral hemorrhagic fever" characterizes a severe multisystem syndrome associated with fever, shock, and bleeding caused by infection with one of a number of viruses, including the Filoviruses Ebola and Marburg.

Both humans and apes are susceptible to viral hemorrhagic fevers, and it is speculated that filovirus infections account at least in part for the recent decline in the gorilla and chimpanzee population in central Africa. There is no cure or approved vaccine for either Marburg or Ebola virus. Immunosuppression occurs early after infection and allows the viruses to reproduce rapidly and cause disease.

"Currently, there is no way to treat most viral hemorrhagic fever outbreaks, and increased international travel, trafficking in wildlife, political instability, and terrorism have made emerging infectious diseases a global concern," stated W. Ian Lipkin, MD, director of the Greene Infectious Disease Laboratory at the Mailman School's Department of Epidemiology an d professor of Epidemiology, Neurology, and Pathology at Columbia University. "The identification of this new mechanism for immunosuppression is anticipated to lead to new drugs for intervention in filoviral hemorrhagic fevers of humans and apes."

In the study, researchers describe a series of amino acids in Ebola and Marburg viruses that resemble proteins in retroviruses known to suppress the immune system. By targeting these amino acids, new drugs could disrupt the ability of these viruses to shut down immune systems and make them vulnerable to the body's natural defenses.

"This brilliant study shows that many viruses, including HIV, use a similar mechanism to disarm their victims," said Gerald Weissmann, MD, Editor-in-Chief of The FASEB Journal. "The Columbia study has shown us new ways to fight against deadly viruses the world over."

The method for discovering this protein underscores the power of bioinformatics for addressing the challenges of emerging infectious diseases. The investigators are currently exploring whether insights derived from understanding the potency of these immunosuppressive peptides can be exploited to treat autoimmune diseases.


'"/>

Source:Columbia University's Mailman School of Public Health


Related biology news :

1. Researchers discover way to make cells in the eye sensitive to light
2. Researchers find how protein allows insects to detect and respond to pheromones
3. Researchers Uncover Key Step In Manufacture of Memory Protein
4. Researchers reveal the infectious impact of salmon farms on wild salmon
5. Researchers identify target for cancer drugs
6. Researchers discover molecule that causes secondary stroke
7. Researchers find missing genes of ancient organism
8. Researchers trace evolution to relatively simple genetic changes
9. Researchers add new tool to tumor-treatment arsenal
10. UF Researchers Map Bacterial Proteins That Cause Tooth Loss
11. VCU Researchers Identify Networks Of Genes Responding To Alcohol In The Brain
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:11/21/2016)... , Nov. 21, 2016   Neurotechnology , ... recognition technologies, today announced that the MegaMatcher On ... was submitted for the NIST Minutiae Interoperability ... all the mandatory steps of the evaluation protocol. ... a continuing test of fingerprint templates used to ...
(Date:11/16/2016)... , Nov. 16, 2016 Sensory Inc ... and security for consumer electronics, and VeriTran ... and retail industry, today announced a global partnership ... way to authenticate users of mobile banking and ... TrulySecure™ software which requires no specialized biometric ...
(Date:11/14/2016)... , Nov. 14, 2016  Based ... identification market, Frost & Sullivan recognizes FST ... Sullivan Award for Visionary Innovation Leadership. FST ... the biometric identification market by pioneering In ... solution for instant, seamless, and non-invasive verification. ...
Breaking Biology News(10 mins):
(Date:12/8/2016)...  Renova™ Therapeutics, a biotechnology company developing gene ... 2 diabetes, announced that it has obtained a ... vector developed in the laboratory of Professor ... The company plans to use this vector in ... "Early research has shown promise ...
(Date:12/8/2016)... ... December 08, 2016 , ... Opal Kelly, a ... device-to-computer interconnect using USB or PCI Express, announced the FOMD-ACV-A4, the company's first ... a small, thin, SODIMM-style module that fits a standard 204-pin SODIMM socket for ...
(Date:12/8/2016)... , Dec. 8, 2016  Anaconda BioMed S.L., ... development of the next generation neuro-thrombectomy system for the ... of Tudor G. Jovin, MD to join its Scientific ... as a strategic network of scientific and clinical experts ... development of the ANCD BRAIN ® to its ...
(Date:12/8/2016)... ... December 08, 2016 , ... Microbial genomics ... Awards. uBiome is one of just six company finalists in the Health & ... to uBiome, companies nominated as finalists in this year’s awards include Google, SpaceX, ...
Breaking Biology Technology: