Navigation Links
Researchers discover how bacteria sense their environments

When humans taste or smell, receptors unique to each nerve cell detect the chemical and send signals to the brain, where many cells process the message to understand what we are smelling or tasting. But a bacterium is just a single cell, and it must use many different receptors to sense and interpret everything around it.

Bacteria can sense in their environments changes in molecular concentrations as small as 0.1 percent, the equivalent of one drop diluted in a pool of a 1,000 drops. How do they do it?

New Cornell research, highlighted on the cover of the May issue of Nature Structural and Molecular Biology, reveals that receptors assemble into a kind of cooperative lattice on a bacterium's surface to amplify infinitesimal changes in the environment and kick off processes that lead to specific responses within the cell.

"Bacteria sense a lot of different things. But assume it's a sugar molecule that a bacterium needs as a nutrient -- even a 0.1 percent change in concentration can be detected, and this sensitivity is maintained over five orders of magnitude in nutrient concentration," said Brian Crane, assistant professor of chemistry and chemical biology and corresponding author of the paper. "Biologically, I know of no other system that is so sensitive over such a large range."

Crane believes the kind of cooperative lattice found in bacterial receptors may in fact point to a general mechanism for cellular signaling and serve as inspiration for developing molecular devices. Such devices could be used to sense a wide range of chemicals, light, ionic strength (salt), pH and heavy metals with great sensitivity, gain and dynamic range. Scientists are interested in developing synthetic systems with such sensing properties as well as engineering bacteria that respond to stimuli such as pollutants or explosives.

Using a combination of X-ray crystallography to determine the structure of receptors and enzymes and a novel spectroscopi c technique for measuring interactions between them, Crane's group was able to develop a model for how the complex of receptors is organized. Jack Freed, Cornell professor of chemistry and chemical biology and director of the National Biomedical Center for Advanced ESR Studies at Cornell, developed the spectroscopic technique, called pulsed electron spin resonance dipolar spectroscopy.

The researchers suggest that when one receptor detects, for example, a sugar in its environment, communication of some sort triggers an array of linked receptors to rearrange itself, much like when water freezes, all the water molecules assort themselves into a new structure. Through this reorganization, the bacterium's receptor array amplifies the signal that a specific molecule has been sensed outside the cell. This structural shift then activates kinases, or enzymes, within the cell, starting a chain reaction that leads to a response, such as changing how the flagella (or tails) spin. This allows the bacterium to move toward or away from what it has sensed.

Such a mechanism of amplification allows signals from the receptors to travel hundreds of angstroms, a distance used in atomic physics that is a virtual marathon in the world of intracellular communication. Ten angstroms equal a nanometer, which is one-billionth of a meter.

Sang-Youn Park, a former graduate student in Cornell's Department of Chemistry and Chemical Biology, and senior research associates Peter Borbat and Alexandrine Bilwes were the study's lead authors. The research was funded by the National Institutes of Health.


'"/>

Source:Cornell University News Service


Related biology news :

1. Researchers discover way to make cells in the eye sensitive to light
2. Researchers find how protein allows insects to detect and respond to pheromones
3. Researchers Uncover Key Step In Manufacture of Memory Protein
4. Researchers reveal the infectious impact of salmon farms on wild salmon
5. Researchers identify target for cancer drugs
6. Researchers discover molecule that causes secondary stroke
7. Researchers find missing genes of ancient organism
8. Researchers trace evolution to relatively simple genetic changes
9. Researchers add new tool to tumor-treatment arsenal
10. UF Researchers Map Bacterial Proteins That Cause Tooth Loss
11. VCU Researchers Identify Networks Of Genes Responding To Alcohol In The Brain
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:10/4/2017)... a global clinical research organization (CRO), announces the launch of Shadow, ... 2017. Shadow is designed to assist medical writers and biometrics teams ... European Medicines Agency (EMA) in meeting the requirements for de-identifying clinical ... ... Tom ...
(Date:6/30/2017)... , June 30, 2017 Today, ... developer and supplier of face and eye tracking ... Featured Product provider program. "Artificial ... innovative way to monitor a driver,s attentiveness levels ... from being able to detect fatigue and prevent ...
(Date:5/16/2017)... -- Veratad Technologies, LLC ( www.veratad.com ), an innovative and ... solutions, announced today they will participate as a sponsor ... May 17, 2017, in Washington D.C.,s ... Identity impacts the lives of billions of ... digital world, defining identity is critical to nearly every ...
Breaking Biology News(10 mins):
(Date:10/12/2017)... ... 2017 , ... They call it the “hairy ball.” It’s ... of a system of linkages and connections so complex and dense that “it ... science at Worcester Polytechnic Institute (WPI) and director of the university’s bioinformatics and ...
(Date:10/12/2017)... ... 12, 2017 , ... BioMedGPS announces expanded coverage of SmartTRAK ... module, US Hemostats & Sealants. , SmartTRAK’s US Market for Hemostats and Sealants ... sealants and biologic sealants used in surgical applications. BioMedGPS estimates the market will ...
(Date:10/11/2017)... ... October 11, 2017 , ... The CRISPR-Cas9 ... enabling overexpression experiments and avoiding the use of exogenous expression plasmids. The simplicity ... for performing systematic gain-of-function studies. , This complement to loss-of-function studies, such ...
(Date:10/11/2017)... INDIANAPOLIS , Oct. 11, 2017  VMS BioMarketing, a ... of a nationwide oncology Clinical Nurse Educator (CNE) network, which ... growing need for communication among health care professionals to enhance ... physicians, nurses, office staff, and other health care professionals to ... for breast cancer. ...
Breaking Biology Technology: