Navigation Links
Researchers discover gene crucial for nerve cell insulation

Researchers funded by the National Institutes of Health have discovered how a defect in a single master gene disrupts the process by which several genes interact to create myelin, a fatty coating that covers nerve cells and increases the speed and reliability of their electrical signals.

The discovery has implications for understanding disorders of myelin production. These disorders can affect the peripheral nervous system—the nerves outside the brain and spine. These disorders are known collectively as peripheral neuropathies. Peripheral neuropathies can result in numbness, weakness, pain, and impaired movement. They include one of the most common genetically inherited disorders, Charcot-Marie-Tooth disease, which causes progressive muscle weakening.

The myelin sheath that surrounds a nerve cell is analogous to the insulating material that coats an electrical cord or wire, keeping nerve impulses from dissipating, allowing them to travel farther and faster along the length of the nerve cell.

The researchers discovered how a defect in just one copy of the gene, known as early growth response gene 2 (EGR2) affects the normal copy of the gene as well as the functioning of other genes, resulting in peripheral neuropathy.

"The researchers have deciphered a key sequence essential to the assembly of myelin," said Duane Alexander, M.D., Director of the NICHD, the NIH institute that funded the study. "Their discovery will provide important insight into the origins of disorders affecting myelin production."

The study appears in the online version of Molecular and Cellular Biology.

John Svaren, Ph.D., an associate professor in the Department of Comparative Bioscience at the University of Wisconsin–Madison's School of Veterinary Medicine, worked with colleagues Scott E. LeBlanc, and Rebecca M. Ward, to conduct the study. Dr. Svaren is an affiliate of NICHD-funded mental retardation and developmental disabilities re search center at the Waisman Center at the University of Wisconsin.

Until this discovery, researchers did not fully understand the complex genetic process that enables Schwann cells, found in the peripheral nervous system, to coat nerves with myelin.

The Newly Discovered Role of EGR2

During this study, the scientists found that EGR2 produces a protein that activates several other genes necessary for myelin production. Some of these genes contain the information needed to make peripheral myelin protein 22 (PMP-22) and myelin protein zero (MPZ). MPZ is the most abundant protein in myelin in the peripheral nervous system.

The overproduction or underproduction of the proteins PMP22 and MPZ account for the majority of inherited peripheral neuropathies, Dr. Svaren said.

Ultimately, the sequence of activating genes "switches on" the Schwann cell, which wraps the nerve axon, the arm-like projection that conveys nerve impulses, in a myelin sheath.

The scientists' research also resolved a long-standing mystery surrounding why a single mutant copy of the EGR2 gene disrupts the functioning of the normal EGR2 gene, leading to a disorder of the nervous system.

In many genetic conditions, the unaffected copy of an affected gene continues to produce its protein. However, the researchers found that the mutant EGR2 copy interferes with the interaction between the normal EGR2 gene and another myelin gene, SOX10, as the two try to work together to produce the myelin protein MPZ.

Therapeutic Potential

By understanding the process which creates myelin, researchers may now be able to investigate new therapies for disorders affecting myelin.

"Our research has uncovered a whole new mechanism for regulating myelin genes," said Dr. Svaren. "Our hope is to exploit this knowledge so that we can adjust the levels of myelin genes such as PMP22 and MPZ, and thereby create an effec tive treatment for myelin diseases."

Understanding the process by which nerve cells are myelinated also could be applied to other disorders as well, Dr. Svaren said. Diabetic neuropathy, which results in a loss of feeling in the extremities, also is thought to involve myelin production.

Dr. Svaren added that it is possible that the current study's findings about myelin production in the peripheral nervous system could lead to greater understanding of how myelination takes place in the central nervous system (the brain and spinal cord). Myelination in the central nervous system is not well understood. Multiple sclerosis, a degenerative muscular disorder that can be fatal, results from the destruction of myelin in the central nervous system.


'"/>

Source:NIH/National Institute of Child Health and Human Development


Related biology news :

1. Researchers discover way to make cells in the eye sensitive to light
2. Researchers find how protein allows insects to detect and respond to pheromones
3. Researchers Uncover Key Step In Manufacture of Memory Protein
4. Researchers reveal the infectious impact of salmon farms on wild salmon
5. Researchers identify target for cancer drugs
6. Researchers discover molecule that causes secondary stroke
7. Researchers find missing genes of ancient organism
8. Researchers trace evolution to relatively simple genetic changes
9. Researchers add new tool to tumor-treatment arsenal
10. UF Researchers Map Bacterial Proteins That Cause Tooth Loss
11. VCU Researchers Identify Networks Of Genes Responding To Alcohol In The Brain
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:3/24/2017)... DUBLIN , Mar 24, 2017 Research ... Vehicle Access System Market Analysis & Trends - Industry Forecast to ... ... poised to grow at a CAGR of around 15.1% over the ... This industry report analyzes the market estimates and forecasts for ...
(Date:3/22/2017)... 21, 2017   Neurotechnology , a provider ... today announced the release of the SentiVeillance ... improved facial recognition using up to 10 surveillance, ... computer. The new version uses deep neural-network-based facial ... it utilizes a Graphing Processing Unit (GPU) for ...
(Date:3/20/2017)... March 20, 2017 At this year,s CeBIT Chancellor ... biometrics manufacturer DERMALOG. The Chancellor came to the DERMALOG stand together with ... this year,s CeBIT partner country. At the largest German biometrics company the ... fingerprint, face and iris recognition as well as DERMALOG´s multi-biometrics system.   ... ...
Breaking Biology News(10 mins):
(Date:7/26/2017)... ... 2017 , ... Cambridge Semantics , the leading provider ... Data Lake® (Anzo SDL) product won ‘Best Text Analytics and Semantic Technology ... , Cambridge Semantics’ Anzo SDL uses Knowledge Graphs based on semantic graph models ...
(Date:7/26/2017)... ... 25, 2017 , ... In this webinar , which ... considerations needed for designing ideal guide RNAs and DNA oligo or plasmid repair ... double-strand breaks in genomic DNA has greatly simplified strategies for precise gene editing ...
(Date:7/26/2017)... (PRWEB) , ... July 26, 2017 , ... ... leading company for the improvement of crop productivity and economics for the food, ... collaboration. The scope of the agreement includes the research and development of microbiome-based ...
(Date:7/24/2017)... ... , ... Charm Sciences, Inc. is pleased to announce the Charm® ROSA® Tetracycline-SL ... Shipments (NCIMS) Laboratory Committee and Appendix N Committee as a drug residue test kit ... NCIMS voted at its annual meeting in April, 2015 to establish a pilot program ...
Breaking Biology Technology: