Navigation Links
Researchers add crucial information on how the body's T cells react to parasitic diseases

In the 1980s, the phrase "T cell count" burst into the world's medical vocabulary as thousands and then millions of patients died of AIDS. The public began to understand the crucial importance of T cells--cellular Pac-Men that roam the bloodstream gobbling up infection and guarding against future attacks.

While scientists understood how T cells worked in certain kinds of diseases, one area has remained murky: disorders caused by protozoan parasites. Now, because of a study just published and led by scientists at the University of Georgia, researchers are closer than ever to understanding how T cells respond to parasitic diseases that kill millions each year.

"We have needed to really know what happens in these infections," said Rick Tarleton, research professor of cellular biology and a faculty member in UGA's Center for Tropical and Emerging Global Diseases (CTEGD). "What is the body's response? This study is the first to show that one parasite, Trypanosoma cruzi, which causes Chagas Disease, elicits a T cell response focused on a few peptides, despite having some 12,000 genes capable of generating hundreds of thousands of potential targets for T cells."

The study was just published in the online journal PLOS Pathogens, a peer-reviewed, open-access journal published by the Public Library of Science. Other authors of the paper include: Diana Martin, the lead author and postdoctoral fellow at UGA; former UGA undergraduates Melissa Cabinian and Matthew Crim; computational biologist Brent Weatherly of the CTEGD; former UGA postdoctoral fellow Susan Sullivan; doctoral students Matt Collins, Charles Rosenberg and Sarah Craven; Alessandro Sette of the La Jolla Institute for Allergy and Immunology in San Diego, Ca.; and Susana Laucella and Miriam Postan of the Nacional de Laboratorios e Institutos de Salud in Buenos Aires, Argentina.

Chagas Disease is a tropical parasitic disease that sickens as many as 18 million people a year, mostly in the Americas, and kills 50,000 of those. The parasite that carries it, T. cruzi, is transmitted to mammals and humans through the bite of several genera of flying, biting insects. What intrigued Tarleton was that T cell response to infection from T. cruzi, while important to the body's ability to fight disease, has remained somewhat cryptic because of the daunting complexity of the processes.

There are actually several kinds of T cells, and the ones Tarleton and his colleagues studied are the cytotoxic T cell, which scientists call CD8+. What they discovered is that the T cell response in T. cruzi is highly focused on a relatively small set of cellular features called "epitopes," which are part of a macromolecule that is recognized by the immune system. The specific epitopes involved are ones encoded by the trans-sialidase (or "ts") family of genes.

"The function of the ts genes is crucial for the parasite," said Tarleton, "because the parasite must have sialic acids to invade cells and infect the host. But since it doesn't have it, it must steal it from the host cells." The problem is that T. cruzi potentially expresses more than a thousand ts genes, and this pool varies from parasite to parasite--making this set of proteins a poor choice for vaccine development, Tarleton said.

The importance of the new research, however, isn't in specifically what happens in T. cruzi and Chagas Disease. Rather, it is a new understanding of how T cells react to infection in all parasitic diseases, including malaria, which may cause as many as 500 million infections and three million deaths annually in humans. The entire area has been little understood because of the almost impenetrable complexity of the problem.

In organisms like viruses and bacteria, which have relatively small genomes, analysis can be more direct; however, understanding the targets of the T cell response in complex pathogens such as T. cruzi requires much more. Scientists mus t integrate information generated from the recent analysis of the T. cruzi genome and proteome, with bioinformatics and cutting-edge techniques like advanced flow cytometry to unravel what is happening.


'"/>

Source:University of Georgia


Related biology news :

1. Researchers discover way to make cells in the eye sensitive to light
2. Researchers find how protein allows insects to detect and respond to pheromones
3. Researchers Uncover Key Step In Manufacture of Memory Protein
4. Researchers reveal the infectious impact of salmon farms on wild salmon
5. Researchers identify target for cancer drugs
6. Researchers discover molecule that causes secondary stroke
7. Researchers find missing genes of ancient organism
8. Researchers trace evolution to relatively simple genetic changes
9. Researchers add new tool to tumor-treatment arsenal
10. UF Researchers Map Bacterial Proteins That Cause Tooth Loss
11. VCU Researchers Identify Networks Of Genes Responding To Alcohol In The Brain
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:11/17/2016)... Nov. 17, 2016  AIC announces that it has just released a new white ... require high-performance scale-out plus high speed data transfer storage solutions. Photo - ... ... ... Setting up a high performance computing or ...
(Date:11/15/2016)... , Nov. 15, 2016  Synthetic Biologics, ... developing therapeutics focused on the gut microbiome, today ... of 25,000,000 shares of its common stock and ... stock at a price to the public of ... to Synthetic Biologics from the offering, excluding the ...
(Date:11/14/2016)... Inc. ("xG" or the "Company") (Nasdaq: XGTI, XGTIW), a ... challenging operating environments, announced its results for the third ... conference call to discuss these results on November 15, ... Key Recent Accomplishments The ... Vislink Communication Systems. The purchase is expected to close ...
Breaking Biology News(10 mins):
(Date:12/2/2016)... ... December 01, 2016 , ... DrugDev believes the only way to ... technology experience. All three tenets were on display at the 2nd Annual DrugDev User ... 40 sponsor, CRO and site organizations to discuss innovation and the future of clinical ...
(Date:12/2/2016)... The immunohistochemistry (IHC) market is projected to reach ... during the forecast period of 2016 to 2021 dominated by immunohistochemistry ... the largest share of immunohistochemistry (IHC) market, by end user.   ... , , ... across 225 pages, profiling 10 companies and supported with 181 tables ...
(Date:11/30/2016)... 2016 /PRNewswire/ - Portage Biotech Inc. ("Portage" or "the ... excited to announce the formation of EyGen, Ltd. ... ophthalmology assets through proof of concept. EyGen,s lead ... Portage Pharmaceuticals Limited and being developed for topical ... anterior segment diseases. This agent has the potential ...
(Date:11/30/2016)... BEIJING , Nov. 30, 2016 /PRNewswire/ ... of genomic services and solutions with cutting edge next-generation ... has completed a USD $75 Million [515 Million RMB] ... CMB International Capital Management ( Shenzhen ) ... Ltd. ("SDIC Innovation") and Shanghai Sigma Square Investment Center ...
Breaking Biology Technology: