Navigation Links
Researcher to study astronaut bone loss for space biology agency

Roger K. Long, MD, an endocrinology research fellow at the San Francisco VA Medical Center and the University of California, San Francisco, was one of only three scientists named in January 2007 as 2006-2008 Postdoctoral Fellows by the National Space Biomedical Research Institute (NSBRI).

Long's NSBRI research project will focus on the causes and possible methods of treating or preventing bone loss resulting from the prolonged weightlessness of space travel.

The research also has great relevance for patients on Earth who are immobilized for long periods –?paraplegics, quadriplegics, and people in casts, says Long's mentor for the project, SFVAMC staff physician Daniel D. Bikle, MD, PhD, a professor of medicine and dermatology at UCSF.

As an NSBRI Fellow, Long will receive $40,000 per year for two years for his research at SFVAMC. In addition, as a member of an NSBRI science and technology team, he will collaborate in person and via teleconference with NSBRI colleagues. He and the other two Fellows were chosen from among a nationwide pool of applicants.

"The loss of mechanical forces on bone in the weightlessness of space dramatically weakens bone," says Long. "The ability of humans to conduct prolonged missions to the moon and Mars will require that the structural integrity of the skeleton be maintained."

Astronauts who spend weeks or months in the weightless environment of space –?a state called skeletal unloading –?lose bone because, in the absence of gravity, they lose the ability to make enough new bone cells to replace old cells that die in the normal course of bone metabolism. After their return to Earth's gravity, an event known as reloading, bone cell production can take months to return to normal. During that time, bones are highly vulnerable to fracture.

Here on Earth, explains Bikle, immobilized patients experience bone loss for the same reason astronauts do: their skeletons have not borne any wei ght. "This makes their rehabilitation risky, because, like astronauts who have returned to earth, they are predisposed to fractures."

Long's research project will focus on the relationship between three substances: insulin-like growth factor-1 (IGF-1), a chemical produced in bone and other organs that promotes the growth of bone and cartilage; IGF-1 receptor, which resides in bone cells and enables them to respond to IGF-1; and beta-3 integrin, a protein that among other roles promotes the function of IGF-1 receptor.

Long's and Bikle's hypothesis is that during prolonged weightlessness, beta-3 integrin production decreases, which in turn diminishes the function of IGF-1 receptor in bone. Without its receptor, IGF-1 has been shown by researchers to be ineffective. The result is a steep drop in the creation of new bone cells, leading to bone loss.

To investigate the hypothesis, Long will take a two-pronged research approach. In the first part, he will study a model of skeletal loading and unloading in human bone cell culture. In the second part, skeletally unloaded rats will be treated with IGF-1 and reloaded on a regular cycle –?much as astronauts might regularly engage in weight-bearing exercise while in orbit –?in order to stimulate integrin production and enhance or recover IGF-1 receptor function. The IGF-1 will act as a signaling device to allow Long to measure the strength of the interaction between integrins and IGF-1 receptor.

"Understanding this interaction, and the role it plays in how bones respond to mechanical forces, will allow interventions to protect the bones of astronauts," Long says.

"We hope to find that we can manipulate the IGF-1 system to accelerate rehabilitation, not only among astronauts but among a broad range of patients," says Bikle. "We might also learn how to prevent bone loss from taking place."

Long concludes, "I am excited and honored to contribute to our nation's efforts to safely explore space, the moon, and Mars."
'"/>

Source:University of California - San Francisco


Related biology news :

1. Researchers discover way to make cells in the eye sensitive to light
2. Researchers find how protein allows insects to detect and respond to pheromones
3. Researchers Uncover Key Step In Manufacture of Memory Protein
4. Researchers reveal the infectious impact of salmon farms on wild salmon
5. Researchers identify target for cancer drugs
6. Researchers discover molecule that causes secondary stroke
7. Researchers find missing genes of ancient organism
8. Researchers trace evolution to relatively simple genetic changes
9. Researchers add new tool to tumor-treatment arsenal
10. UF Researchers Map Bacterial Proteins That Cause Tooth Loss
11. VCU Researchers Identify Networks Of Genes Responding To Alcohol In The Brain

Post Your Comments:
*Name:
*Comment:
*Email:


(Date:12/7/2016)... , Dec. 7, 2016   Avanade ... successful Formula One teams in history, exploit biometric data ... stop performance and maintain the competitive edge against their ... 2016. Avanade has worked with Williams ... range of biometric data (heart rate, breathing rate, temperature ...
(Date:12/5/2016)... WASHINGTON , Dec. 5, 2016  The ... (NIJ), today published "Can CT Scans Enhance or ... examines the potential of supporting or replacing forensic ... a CT scan. In response to ... NIJ is exploring using CT scans as a ...
(Date:11/29/2016)... -- BioDirection, a privately held medical device company developing ... of concussion and other traumatic brain injury (TBI), announced ... with the U.S. Food and Drug Administration (FDA) to ... the meeting company representatives reviewed plans for clinical development ... of a planned pilot trial. "We ...
Breaking Biology News(10 mins):
(Date:12/8/2016)... SAN DIEGO , Dec. 8, 2016 /PRNewswire/ ... presented demonstrating the role of the Breast Cancer ... stage, ER+ breast cancer are most at-risk for ... therapy. Data include results from three studies advancing ... provide information related to tumor biology and inform ...
(Date:12/8/2016)... 8, 2016 Oxford ... erweitert seine Palette an anpassbaren SureSeq™ NGS-Panels mit ... Panels, das ein schnelles und kostengünstiges Studium der ... bietet eine Erkennung von Einzel-Nukleotid-Variationen (Single Nucleotide Variation, ... einzigen kleinen Panel und ermöglicht eine individuelle Anpassung ...
(Date:12/8/2016)... CA (PRWEB) , ... December 08, 2016 , ... ... as finalists in the World Technology Awards. uBiome is one of just six ... across all categories. , In addition to uBiome, companies nominated as finalists in ...
(Date:12/8/2016)... Dec. 8, 2016 Savannah River Remediation ... and selected NewTechBio,s NT-MAX Lake & Pond ... beneficial bacteria, in conjunction with Hexa Armor/ Rhombo ... with National Pollutant Discharge Elimination System requirements. ... a steady history of elevated pH levels, above ...
Breaking Biology Technology: