Navigation Links
Researcher to study astronaut bone loss for space biology agency

Roger K. Long, MD, an endocrinology research fellow at the San Francisco VA Medical Center and the University of California, San Francisco, was one of only three scientists named in January 2007 as 2006-2008 Postdoctoral Fellows by the National Space Biomedical Research Institute (NSBRI).

Long's NSBRI research project will focus on the causes and possible methods of treating or preventing bone loss resulting from the prolonged weightlessness of space travel.

The research also has great relevance for patients on Earth who are immobilized for long periods –?paraplegics, quadriplegics, and people in casts, says Long's mentor for the project, SFVAMC staff physician Daniel D. Bikle, MD, PhD, a professor of medicine and dermatology at UCSF.

As an NSBRI Fellow, Long will receive $40,000 per year for two years for his research at SFVAMC. In addition, as a member of an NSBRI science and technology team, he will collaborate in person and via teleconference with NSBRI colleagues. He and the other two Fellows were chosen from among a nationwide pool of applicants.

"The loss of mechanical forces on bone in the weightlessness of space dramatically weakens bone," says Long. "The ability of humans to conduct prolonged missions to the moon and Mars will require that the structural integrity of the skeleton be maintained."

Astronauts who spend weeks or months in the weightless environment of space –?a state called skeletal unloading –?lose bone because, in the absence of gravity, they lose the ability to make enough new bone cells to replace old cells that die in the normal course of bone metabolism. After their return to Earth's gravity, an event known as reloading, bone cell production can take months to return to normal. During that time, bones are highly vulnerable to fracture.

Here on Earth, explains Bikle, immobilized patients experience bone loss for the same reason astronauts do: their skeletons have not borne any wei ght. "This makes their rehabilitation risky, because, like astronauts who have returned to earth, they are predisposed to fractures."

Long's research project will focus on the relationship between three substances: insulin-like growth factor-1 (IGF-1), a chemical produced in bone and other organs that promotes the growth of bone and cartilage; IGF-1 receptor, which resides in bone cells and enables them to respond to IGF-1; and beta-3 integrin, a protein that among other roles promotes the function of IGF-1 receptor.

Long's and Bikle's hypothesis is that during prolonged weightlessness, beta-3 integrin production decreases, which in turn diminishes the function of IGF-1 receptor in bone. Without its receptor, IGF-1 has been shown by researchers to be ineffective. The result is a steep drop in the creation of new bone cells, leading to bone loss.

To investigate the hypothesis, Long will take a two-pronged research approach. In the first part, he will study a model of skeletal loading and unloading in human bone cell culture. In the second part, skeletally unloaded rats will be treated with IGF-1 and reloaded on a regular cycle –?much as astronauts might regularly engage in weight-bearing exercise while in orbit –?in order to stimulate integrin production and enhance or recover IGF-1 receptor function. The IGF-1 will act as a signaling device to allow Long to measure the strength of the interaction between integrins and IGF-1 receptor.

"Understanding this interaction, and the role it plays in how bones respond to mechanical forces, will allow interventions to protect the bones of astronauts," Long says.

"We hope to find that we can manipulate the IGF-1 system to accelerate rehabilitation, not only among astronauts but among a broad range of patients," says Bikle. "We might also learn how to prevent bone loss from taking place."

Long concludes, "I am excited and honored to contribute to our nation's efforts to safely explore space, the moon, and Mars."
'"/>

Source:University of California - San Francisco


Related biology news :

1. Researchers discover way to make cells in the eye sensitive to light
2. Researchers find how protein allows insects to detect and respond to pheromones
3. Researchers Uncover Key Step In Manufacture of Memory Protein
4. Researchers reveal the infectious impact of salmon farms on wild salmon
5. Researchers identify target for cancer drugs
6. Researchers discover molecule that causes secondary stroke
7. Researchers find missing genes of ancient organism
8. Researchers trace evolution to relatively simple genetic changes
9. Researchers add new tool to tumor-treatment arsenal
10. UF Researchers Map Bacterial Proteins That Cause Tooth Loss
11. VCU Researchers Identify Networks Of Genes Responding To Alcohol In The Brain

Post Your Comments:
*Name:
*Comment:
*Email:


(Date:3/28/2017)... PUNE, India , March 28, 2017 ... (Analog, IP, Biometrics), Hardware (Camera, Monitors, Servers, Storage Devices), ... Maintenance), Vertical, and Region - Global Forecast to 2022", ... 30.37 Billion in 2016 and is projected to reach ... 15.4% between 2017 and 2022. The base year considered ...
(Date:3/23/2017)... The report "Gesture Recognition and Touchless Sensing Market by Technology (Touch-based and Touchless), ... published by MarketsandMarkets, the market is expected to be worth USD 18.98 billion ... Continue Reading ... ...      (Logo: ...
(Date:3/22/2017)... March 21, 2017 Vigilant Solutions , ... law enforcement agencies, announced today the appointment of retired ... of public safety business development. Mr. Sheridan ... experience, including a focus on the aviation transportation sector, ... recent position, Mr. Sheridan served as the Aviation Liaison ...
Breaking Biology News(10 mins):
(Date:7/18/2017)... ... 18, 2017 , ... Blood centers traditionally see a dangerous drop of blood ... a struggle for community blood centers as high schools are out and many frequent ... is teaming up with the South Texas Blood & Tissue Center ...
(Date:7/17/2017)... ... July 17, 2017 , ... The Academy of Model Aeronautics ... National Model Aviation Day will take place from 9 a.m. to 2 p.m. at ... activities for all ages. , Aviation Adventure Day will be packed with entertaining activities ...
(Date:7/17/2017)... ... July 17, 2017 , ... Panitch Schwarze Belisario & ... the BiG (Biomedical Innovation Group) annual meeting in China. , This year’s meeting, ... receptor T-cell) therapy, a rapidly developing highly personalized anti-cancer technology that involves removing ...
(Date:7/16/2017)... ... 16, 2017 , ... OHAUS Corporation, a leading worldwide manufacturer ... new line of Extreme Environment Shakers today. , Extreme Environment Shakers , OHAUS ... optimal cell growth such as cell cultures, solubility studies and extraction procedures. These ...
Breaking Biology Technology: