Navigation Links
Research reveals control of potent immune regulator

A new study reveals how the production of a potent immune regulator called interferon gamma (IFNg) is controlled in natural killer (NK) cells, immune cells that typically defend the body against cancer and infections.

IFNg, produced by NK cells and other cell types, plays a critical role in killing pathogen-infected cells and in defending against tumor cells. However, overproduction of IFNg is also dangerous to the body and can cause autoimmune diseases. But exactly how the body tightly controls IFNg production ?and, therefore, NK-cell activity ?is not known.

The study, published in the May issue of the journal Immunity, looked at substances called pro-inflammatory cytokines, which cause NK cells to make IFNg and stimulate their activity. It also looked at transforming growth factor beta (TGFb), a substance also made by NK cells that lowers IFNg production.

The research, by investigators with the Ohio State University Comprehensive Cancer Center ?Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, found that the pro-inflammatory cytokines not only cause NK cells to make IFNg, but they also shut down TGFb signaling, which inhibits production of IFNg.

That is, the cytokines not only increase some positive regulators of IFNg production, but they also shut down the TGFb signals that inhibit IFNg production.

In addition, the scientists found that TGFb turns down IFNg production ?and, therefore, NK cell activity ?both directly and indirectly.

The direct mechanism turns off the IFNg gene itself. The indirectly mechanism blocks a protein that normally turns up IFNg production.

"Our findings provide important details about the fine balance between positive and negative regulators of IFNg production in NK cells," says principal investigator Michael A. Caligiuri, director of the OSU Comprehensive Cancer Center. "Mother Nature uses a symphony of cytokines that result in exquisitely tight control of its production in the healthy state.

"This might help us harness the cancer-killing ability of NK cells to control tumor growth and lead to new treatments that complement current cancer therapy," he says.

The body carefully regulates IFNg levels. If there is too little of the substance, the risk of infection and cancer rises. If there is too much IFNg, NK cells become too plentiful and autoimmune diseases such as inflammatory bowel disease can occur.

"Our findings explain the yin and yang of the system that controls NK cells," says first author Jianhua Yu, a post-doctoral student in Caligiuri's laboratory. "When NK cells are called into action, the body not only turns up the activation pathway, it also shuts down the anti-activation pathway."

Likewise, when TGFb turns down NK cell activity, it not only turns off the IFNg gene, it also shuts down the pathway that activates the gene.

"In each instance, these regulatory cytokines deliver a double whammy," Caligiuri says. "They turn on what is needed and turn off anything that interferes with it."


'"/>

Source:Ohio State University


Related biology news :

1. Researchers discover way to make cells in the eye sensitive to light
2. Quantum Dots Research Leads to New Knowledge about Protein Binding in Plants
3. Researchers find how protein allows insects to detect and respond to pheromones
4. Researchers Uncover Key Step In Manufacture of Memory Protein
5. Research advances quest for HIV-1 vaccine
6. Research on Worms Yields Clues on Aging
7. Researchers reveal the infectious impact of salmon farms on wild salmon
8. Researchers identify target for cancer drugs
9. Weill Cornell Research Reveals Secrets Of Trafficking Within Cells
10. Researchers discover molecule that causes secondary stroke
11. Researchers find missing genes of ancient organism
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:4/4/2017)... YORK , April 4, 2017   EyeLock ... today announced that the United States Patent and Trademark ... patent broadly covers the linking of an iris image ... same transaction) and represents the company,s 45 th ... latest patent is very timely given the multi-modal biometric ...
(Date:3/30/2017)... March 30, 2017 The research team of ... three-dimensional (3D) fingerprint identification by adopting ground breaking 3D fingerprint minutiae ... realm of speed and accuracy for use in identification, crime investigation, ... cost. ... A research ...
(Date:3/28/2017)... -- The report "Video Surveillance Market by ... Devices), Software (Video Analytics, VMS), and Service (VSaaS, Installation ... 2022", published by MarketsandMarkets, the market was valued at ... reach USD 75.64 Billion by 2022, at a CAGR ... considered for the study is 2016 and the forecast ...
Breaking Biology News(10 mins):
(Date:10/10/2017)... ... October 10, 2017 , ... Dr. Bob Harman, founder ... local San Diego Rotary Club. The event entitled “Stem Cells and ... had 300+ attendees. Dr. Harman, DVM, MPVM was joined by two human doctors: ...
(Date:10/10/2017)... ... October 10, 2017 , ... The Pittcon ... awards honoring scientists who have made outstanding contributions to analytical chemistry ... Pittcon 2018, the world’s leading conference and exposition for laboratory science, which will ...
(Date:10/9/2017)... (PRWEB) , ... October 09, 2017 , ... ... a four-tiered line of medical marijuana products targeting the needs of consumers who ... packaging of Kindred takes place in Phoenix, Arizona. , As operators of two ...
(Date:10/7/2017)... , Oct. 6, 2017  The 2017 Nobel ... three scientists, Jacques Dubochet, Joachim Frank ... in cryo-electron microscopy (cryo-EM) have helped ... the structural biology community. The winners worked with ... now routinely produce highly resolved, three-dimensional images of ...
Breaking Biology Technology: