Navigation Links
Research reveals control of potent immune regulator

A new study reveals how the production of a potent immune regulator called interferon gamma (IFNg) is controlled in natural killer (NK) cells, immune cells that typically defend the body against cancer and infections.

IFNg, produced by NK cells and other cell types, plays a critical role in killing pathogen-infected cells and in defending against tumor cells. However, overproduction of IFNg is also dangerous to the body and can cause autoimmune diseases. But exactly how the body tightly controls IFNg production ?and, therefore, NK-cell activity ?is not known.

The study, published in the May issue of the journal Immunity, looked at substances called pro-inflammatory cytokines, which cause NK cells to make IFNg and stimulate their activity. It also looked at transforming growth factor beta (TGFb), a substance also made by NK cells that lowers IFNg production.

The research, by investigators with the Ohio State University Comprehensive Cancer Center ?Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, found that the pro-inflammatory cytokines not only cause NK cells to make IFNg, but they also shut down TGFb signaling, which inhibits production of IFNg.

That is, the cytokines not only increase some positive regulators of IFNg production, but they also shut down the TGFb signals that inhibit IFNg production.

In addition, the scientists found that TGFb turns down IFNg production ?and, therefore, NK cell activity ?both directly and indirectly.

The direct mechanism turns off the IFNg gene itself. The indirectly mechanism blocks a protein that normally turns up IFNg production.

"Our findings provide important details about the fine balance between positive and negative regulators of IFNg production in NK cells," says principal investigator Michael A. Caligiuri, director of the OSU Comprehensive Cancer Center. "Mother Nature uses a symphony of cytokines that result in exquisitely tight control of its production in the healthy state.

"This might help us harness the cancer-killing ability of NK cells to control tumor growth and lead to new treatments that complement current cancer therapy," he says.

The body carefully regulates IFNg levels. If there is too little of the substance, the risk of infection and cancer rises. If there is too much IFNg, NK cells become too plentiful and autoimmune diseases such as inflammatory bowel disease can occur.

"Our findings explain the yin and yang of the system that controls NK cells," says first author Jianhua Yu, a post-doctoral student in Caligiuri's laboratory. "When NK cells are called into action, the body not only turns up the activation pathway, it also shuts down the anti-activation pathway."

Likewise, when TGFb turns down NK cell activity, it not only turns off the IFNg gene, it also shuts down the pathway that activates the gene.

"In each instance, these regulatory cytokines deliver a double whammy," Caligiuri says. "They turn on what is needed and turn off anything that interferes with it."


'"/>

Source:Ohio State University


Related biology news :

1. Researchers discover way to make cells in the eye sensitive to light
2. Quantum Dots Research Leads to New Knowledge about Protein Binding in Plants
3. Researchers find how protein allows insects to detect and respond to pheromones
4. Researchers Uncover Key Step In Manufacture of Memory Protein
5. Research advances quest for HIV-1 vaccine
6. Research on Worms Yields Clues on Aging
7. Researchers reveal the infectious impact of salmon farms on wild salmon
8. Researchers identify target for cancer drugs
9. Weill Cornell Research Reveals Secrets Of Trafficking Within Cells
10. Researchers discover molecule that causes secondary stroke
11. Researchers find missing genes of ancient organism
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:2/3/2016)... -- --> --> ... Identification System Market by Component (Hardware and Software), Search ... Government, Healthcare, and Transportation) and Geography - Global Forecast ... to be worth USD 8.49 Billion by 2020 at ... The transformation and technology evolution from the manual process ...
(Date:2/2/2016)... , Feb. 2, 2016 Checkpoint Inhibitors ... Rising Market Are you interested in the ... revenues for checkpoint inhibitors. Visiongain,s report gives those ... product and national level. Avoid falling behind ... progress, opportunities and revenues those emerging cancer therapies ...
(Date:2/1/2016)... , Feb. 1, 2016  Today, the first day ... announced plans to develop a first of its kind ... of IBM Watson. In the first application of ... (NYSE: IBM ), and Welltok will create a ... assessments with cognitive analytics, delivered on Welltok,s health optimization ...
Breaking Biology News(10 mins):
(Date:2/11/2016)... 2016  Vermillion, Inc. (NASDAQ: VRML ), a ... the formation of the Steering Committee for its Pelvic ... --> Pelvic masses can present physicians and healthcare ... pregnancy is ruled out, pelvic masses may include cancers ... benign ovarian tumors and gastrointestinal and urinary tract masses. ...
(Date:2/11/2016)... BioPharma Selling Solutions (Spectra) is a new Contract ... experience, expertise, operational delivery and customer focus to ... in concert with industry leading commercial experts, the ... needs of its clients by providing value-based creative ... non-personal promotion. --> ...
(Date:2/11/2016)... Calif. , Feb. 11, 2016  Dovetail Genomics™ ... to its beta program for a planned metagenomic genome ... present the company,s metagenomic genome assembly method in a ... in Genome Biology & Technology conference in ... of these highly complex datasets is difficult. Using its ...
(Date:2/11/2016)... ... February 11, 2016 , ... Reichert Technologies, which has ... to pursue the highest level of accuracy and quality with the addition of ... the AR5 Refractometer. Accurate, reliable and tough enough for the most demanding ...
Breaking Biology Technology: