Navigation Links
Research reveals control of potent immune regulator

A new study reveals how the production of a potent immune regulator called interferon gamma (IFNg) is controlled in natural killer (NK) cells, immune cells that typically defend the body against cancer and infections.

IFNg, produced by NK cells and other cell types, plays a critical role in killing pathogen-infected cells and in defending against tumor cells. However, overproduction of IFNg is also dangerous to the body and can cause autoimmune diseases. But exactly how the body tightly controls IFNg production ?and, therefore, NK-cell activity ?is not known.

The study, published in the May issue of the journal Immunity, looked at substances called pro-inflammatory cytokines, which cause NK cells to make IFNg and stimulate their activity. It also looked at transforming growth factor beta (TGFb), a substance also made by NK cells that lowers IFNg production.

The research, by investigators with the Ohio State University Comprehensive Cancer Center ?Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, found that the pro-inflammatory cytokines not only cause NK cells to make IFNg, but they also shut down TGFb signaling, which inhibits production of IFNg.

That is, the cytokines not only increase some positive regulators of IFNg production, but they also shut down the TGFb signals that inhibit IFNg production.

In addition, the scientists found that TGFb turns down IFNg production ?and, therefore, NK cell activity ?both directly and indirectly.

The direct mechanism turns off the IFNg gene itself. The indirectly mechanism blocks a protein that normally turns up IFNg production.

"Our findings provide important details about the fine balance between positive and negative regulators of IFNg production in NK cells," says principal investigator Michael A. Caligiuri, director of the OSU Comprehensive Cancer Center. "Mother Nature uses a symphony of cytokines that result in exquisitely tight control of its production in the healthy state.

"This might help us harness the cancer-killing ability of NK cells to control tumor growth and lead to new treatments that complement current cancer therapy," he says.

The body carefully regulates IFNg levels. If there is too little of the substance, the risk of infection and cancer rises. If there is too much IFNg, NK cells become too plentiful and autoimmune diseases such as inflammatory bowel disease can occur.

"Our findings explain the yin and yang of the system that controls NK cells," says first author Jianhua Yu, a post-doctoral student in Caligiuri's laboratory. "When NK cells are called into action, the body not only turns up the activation pathway, it also shuts down the anti-activation pathway."

Likewise, when TGFb turns down NK cell activity, it not only turns off the IFNg gene, it also shuts down the pathway that activates the gene.

"In each instance, these regulatory cytokines deliver a double whammy," Caligiuri says. "They turn on what is needed and turn off anything that interferes with it."


'"/>

Source:Ohio State University


Related biology news :

1. Researchers discover way to make cells in the eye sensitive to light
2. Quantum Dots Research Leads to New Knowledge about Protein Binding in Plants
3. Researchers find how protein allows insects to detect and respond to pheromones
4. Researchers Uncover Key Step In Manufacture of Memory Protein
5. Research advances quest for HIV-1 vaccine
6. Research on Worms Yields Clues on Aging
7. Researchers reveal the infectious impact of salmon farms on wild salmon
8. Researchers identify target for cancer drugs
9. Weill Cornell Research Reveals Secrets Of Trafficking Within Cells
10. Researchers discover molecule that causes secondary stroke
11. Researchers find missing genes of ancient organism
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:12/2/2016)... 2016   SoftServe , a global digital ... an electrocardiogram (ECG) biosensor analysis system for continuous ... asset. The smart system ensures device-to-device communication between ... and mobile devices to easily ,recognize, and monitor ... vehicle technology advances, so too must the security ...
(Date:11/29/2016)... 29, 2016   Neurotechnology , a ... recognition technologies, today released FingerCell 3.0, a ... solutions that run on low-power, low-memory microcontrollers. ... less than 128KB of memory, enabling it ... have limited on-board resources, such as: mobile ...
(Date:11/22/2016)... India , November 22, 2016 According to ... (Fingerprint, IRIS, Palm Print, Face, Vein, Signature, Voice), Multi-Factor), Component (Hardware and ... 2022", published by MarketsandMarkets, the market is expected to grow from USD ... a CAGR of 16.79% between 2016 and 2022. ... ...
Breaking Biology News(10 mins):
(Date:12/8/2016)... , ... December 08, 2016 ... ... the commercial launch of flexible packaging for their exceptionally efficient human mesenchymal ... system extends RoosterBio’s portfolio of bioprocess media products engineered to radically streamline ...
(Date:12/8/2016)... 2016  Soligenix, Inc. (OTCQB: SNGX) (Soligenix or ... developing and commercializing products to treat rare diseases ... today the long-term follow-up data from its Phase ... Innate Defense Regulator (IDR), in the treatment of ... patients undergoing chemoradiation therapy (CRT).  The additional 12-month ...
(Date:12/8/2016)... Savannah River Remediation LLC group evaluated ... NT-MAX Lake & Pond Sludge and Muck ... conjunction with Hexa Armor/ Rhombo cover manufactured by ... Discharge Elimination System requirements. The Savannah ... of elevated pH levels, above 8.5, especially during ...
(Date:12/8/2016)... 2016   Biocept, Inc . (NASDAQ: ... clinically actionable liquid biopsy tests to improve the ... featuring its Target Selector™ Circulating Tumor Cell platform ... detection of actionable biomarkers in patients with metastatic ... Sara Cannon Research Institute (SCRI), the research arm ...
Breaking Biology Technology: