Navigation Links
Research highlights how bacteria produce energy

The world's smallest life forms could be the answer to one of today's biggest problems: providing sustainable, renewable energy for the future. Using a variety of natural food sources, bacteria can be used to create electricity, produce alternative fuels like ethanol and even boost the output of existing oil wells, according to research being presented this week at the 106th General Meeting of the (ASM) American Society for Microbiology in Orlando, Florida.

"Microbial fuel cells show promise for conversion of organic wastes and renewable biomass to electricity, but further optimization is required for most applications," says Derek Lovley of the University of Massachusetts in Amherst. Earlier this month, Lovley announced at a meeting that he and his colleagues were able to achieve a 10-fold increase in electrical output by allowing the bacteria in microbial fuel cells to grow on biofilms on the electrodes of a fuel cell.

This week, Gemma Reguera, a researcher in Lovley's lab will present data identifying for the first time how these bacteria are able to transfer electrons through the biofilms to the electrodes.

"Cells at a distance from the anode remained viable with no decrease in the efficiency of current production as the thickness of the biofilm increased. These results are surprising because Geobacter bacteria do not produce soluble molecules or 'shuttles' that could diffuse through the biofilm and transfer electrons from cells onto the anode," says Reguera.

She and her colleagues discovered that the bacteria produce conductive protein filaments, or pili 'nanowires,' to transfer electrons. The finding that pili can extend the distance over which electrons can be transferred suggests additional avenues for genetically engineering the bacteria to further enhance power production.

Researchers from the Universidad Nacional Autonoma de Mexico announce that they have genetically engineered the bacterium Bacillus subtilis to directly ferment glucose sugar to ethanol with a high (86%) yield. This is the first step in a quest to develop bacteria that can breakdown and ferment cellulose biomass directly to ethanol.

"Currently ethanol is produced primarily from sugarcane or cornstarch, but much more biomass in the whole plant, including stems and leaves, can be converted to ethanol using clean technology," says Aida-Romero Garcia, one of the researchers on the study. The next step is to engineer the bacteria to produce the enzymes, known as cellulases, to break the stems and leaves down into the simple carbohydrates for fermentation.

Bacteria can not only produce alternative fuels, but could also aid in oil production by boosting output of existing wells. Michael McInerney and his colleagues at the University of Oklahoma will present research demonstrating the technical feasibility of using detergent-producing microorganisms to recover entrapped oil from oil reservoirs.

"Our approach is to use microorganisms that make detergent-like molecules (biosurfactants) to clean oil off of rock surfaces and mobilize oil stuck in small cavities. However, up till now, it is not clear whether microorganisms injected into an oil reservoir will be active and whether they will make enough biosurfactant to mobilize entrapped oil," says McInerney.

He and his colleagues were able to inoculate an oil reservoir with specific strains of bacteria and have these bacteria make biosurfactants in amounts needed for substantial oil recovery.

"We now know that the microorganisms will work as intended in the oil reservoir. The next important question is whether our approach will recover entrapped oil economically. We saw an increase in oil production after our test, but we need to measure oil production more precisely to be certain," says McInerney.


Source:American Society for Microbiology

Related biology news :

1. Researchers discover way to make cells in the eye sensitive to light
2. Quantum Dots Research Leads to New Knowledge about Protein Binding in Plants
3. Researchers find how protein allows insects to detect and respond to pheromones
4. Researchers Uncover Key Step In Manufacture of Memory Protein
5. Research advances quest for HIV-1 vaccine
6. Research on Worms Yields Clues on Aging
7. Researchers reveal the infectious impact of salmon farms on wild salmon
8. Researchers identify target for cancer drugs
9. Weill Cornell Research Reveals Secrets Of Trafficking Within Cells
10. Researchers discover molecule that causes secondary stroke
11. Researchers find missing genes of ancient organism
Post Your Comments:

(Date:10/6/2015)... , Oct. 6, 2015 Track Group, Inc. ... that it has signed a contract with the Virginia ... the full range of sentences under the Department,s oversight. ... the Americas. "This contract with the Virginia DOC will ... US and advances our position as a trusted leader ...
(Date:10/5/2015)... October 5, 2015 ... for NXT-ID, Inc. (NASDAQ: NXTD ), a biometric ... --> ) releases the ... NXTD ), a biometric authentication company focused on ... Technology Group ( ) releases the ...
(Date:10/1/2015)... Oct. 1, 2015  Biometrics includes diverse set ... body characteristics, such as fingerprints, eye retinas, facial ... of biometrics technology has been constantly increasing in ... five years. In addition to the most prominent ... recognition, other means of biometric authentication are rapidly ...
Breaking Biology News(10 mins):
(Date:10/13/2015)... ... October 13, 2015 , ... SonaCare Medical, LLC, a ... it received de novo clearance from the U.S. Food and Drug Administration (FDA) ... prostate tissue. Sonablate® is the first High Intensity Therapeutic Ultrasound (HITU) device to ...
(Date:10/12/2015)... and BRUSSELS , Oct. 12, 2015 /PRNewswire/ ... today presented additional findings from an exploratory sub-study of the ... were presented today in an oral plenary session at the ... Meeting in Seattle . 2 ... The small exploratory sub-study data showed that, at month ...
(Date:10/12/2015)... Oct. 12, 2015  Rebiotix Inc. today announced ... designated its lead Microbiota Restoration Therapy (MRT) RBX2660 ... recurrent Clostridium difficile (C diff) infection, ... causes 29,000 deaths in the U.S. annually. 1 ... that was founded to revolutionize the treatment of ...
(Date:10/12/2015)... 2015  Patara Pharma, a clinical-stage biotechnology company ... and conditions, today announced the closing of a ... with the close of its sale of preferred ... Security Agreement with Silicon Valley Bank whereby the ... will use the funds from the financing to ...
Breaking Biology Technology: