Navigation Links
Research details how a virus hijacks cell signals to cause infection

A common virus that causes meningitis and heart inflammation takes a "back door" approach to evade natural barriers, then exploits biological signals to infect human cells. Broadening knowledge of how viruses cause infection, a new study describes elaborate methods that the virus has evolved to bypass the body's defenses.

"This study helps to explain how group B coxsackieviruses infect cells," said Jeffrey M. Bergelson, M.D., a pediatric infectious diseases specialist at The Children's Hospital of Philadelphia. "We found new steps in the virus life cycle."

Dr. Bergelson's study, co-authored with Carolyn B. Coyne, Ph.D., also of Children's Hospital, appears in the Jan. 13 issue of the journal Cell.

Group B coxsackieviruses (CVBs) are common in people, but usually are defeated by the immune system after causing minor infections. However, CVBs may sometimes cause myocarditis, a potentially severe inflammation of the heart in children and adults, as well as viral meningitis, which inflames the lining of the brain. Rarely, the virus may lead to fatal, overwhelming infection in newborns.

CVBs typically reach people in contaminated food or water, with the virus entering cells that line the intestine, called epithelial cells. Just how the virus enters those cells has been puzzling to scientists. Dr. Bergelson previously discovered a cell receptor called the coxsackievirus and adenovirus receptor (CAR) to which the virus attaches itself. However, the CAR remains below the surface of epithelial cells, in a seemingly inaccessible location called the tight junction.

In the new study, Drs. Bergelson and Coyne found that CVBs have evolved an indirect route of attack. The virus first attaches itself to more accessible cell receptors called DAF receptors that lie exposed on the upper surface of epithelial cells.

After attaching itself to a DAF receptor, the virus triggers two signals that open the door to infection. One signal causes the virus to move into the tight junction, where it can reach the CAR. A second signal leads the virus to move deeper into cells where it can release its nucleic acid payload and complete the process of infection.

"We showed for the first time that this virus is dependent on signaling pathways to drive invasion," said Dr. Bergelson. Specifically, the coxsackievirus activates kinases, enzymes that are instrumental in moving structures within cells.

"These particular kinases were previously known to be active in cancers, where their signaling functions go out of control," he added. "However, kinases have a normal function, in enabling cells to respond to hormones or growth factors. We showed in this study that viruses can co-opt kinase signaling processes to advance an infection."

In describing how the coxsackievirus takes advantage of signaling pathways, added Dr. Bergelson, his investigations revealed steps in a virus's life cycle that were previously unknown. "Eventually this understanding may yield clinical benefits, by contributing to future therapies to block viral infections. For now, we have learned more about cell functions, and how viruses may evolve unexpected methods to force themselves into cells."


Source:Children's Hospital of Philadelphia

Related biology news :

1. Researchers discover way to make cells in the eye sensitive to light
2. Quantum Dots Research Leads to New Knowledge about Protein Binding in Plants
3. Researchers find how protein allows insects to detect and respond to pheromones
4. Researchers Uncover Key Step In Manufacture of Memory Protein
5. Research advances quest for HIV-1 vaccine
6. Research on Worms Yields Clues on Aging
7. Researchers reveal the infectious impact of salmon farms on wild salmon
8. Researchers identify target for cancer drugs
9. Weill Cornell Research Reveals Secrets Of Trafficking Within Cells
10. Researchers discover molecule that causes secondary stroke
11. Researchers find missing genes of ancient organism
Post Your Comments:

(Date:11/30/2015)... 2015  BIOCLAIM announced today that is has ... Innovation Awards:  Healthcare Edition, an awards program from ... FierceHealthcare , and FierceMobileHealthcare ... the category of "Privacy and Cybersecurity." ... --> Photo - ...
(Date:11/26/2015)... , Nov. 26, 2015 Research and Markets ... "Capacitive Fingerprint Sensors - Technology and Patent Infringement ... --> --> Fingerprint sensors ... in smartphones. The fingerprint sensor vendor Idex forecasts an ... units in mobile devices and of the fingerprint sensor ...
(Date:11/20/2015)... -- NXTD ) ("NXT-ID" or the "Company"), ... commerce market and creator of the Wocket® smart wallet, ... interviewed on The RedChip Money Report television ... Bloomberg Europe , Bloomberg Asia, Bloomberg Australia, and ... ) ("NXT-ID" or the "Company"), a biometric authentication company ...
Breaking Biology News(10 mins):
(Date:12/1/2015)... ... 2015 , ... The American Society of Gynecologic Laparoscopists, AAGL, ... will join fellow surgeons in the shared pursuit of “advancing minimally invasive ... founder of Plano Urogynecology Associates and Fellow of the American College of ...
(Date:12/1/2015)... , ... December 01, 2015 , ... Matthew “Tex” VerMilyea, ... post, VerMilyea will oversee all IVF lab procedures as well as continue ... preservation. , “We traveled 7,305 miles to Auckland, New Zealand to bring home a ...
(Date:12/1/2015)... , December 1, 2015 ... addition of the  "2016 U.K. Virology and ... Forecasts for 100 Tests, Supplier Shares by ...  report to their offering.  --> ... the  "2016 U.K. Virology and Bacteriology Testing ...
(Date:11/30/2015)... ... November 30, 2015 , ... Global ... practitioners and aesthetics professionals from Central America and abroad for the first Iberoamerican ... City, Panama Feb. 17-19, 2016. Testart will present and discuss new trends in ...
Breaking Biology Technology: