Navigation Links
Rescuing injured hearts by enhancing regeneration

Using a two-drug approach, researchers at Children's Hospital Boston have demonstrated that it may be possible to rescue heart function after a heart attack and protect the heart from scarring. Working with rats, they combined an agent that overcomes a natural inhibitor of cell division with a naturally occurring growth factor that encourages blood vessel growth (angiogenesis). Together, these two agents enabled heart-muscle cells to multiply and the heart to regain its function after a simulated myocardial infarction. The study will appear in the October 17 issue of the Proceedings of the National Academy of Sciences (posted online during the week of October 9).

Normally, after a heart attack, the damaged heart muscle cannot grow back and is instead replaced by scar tissue. Excessive scarring can impair the heart's pumping capacity and can lead to life-threatening arrhythmias. Heart-muscle cells (cardiomyocytes) normally cannot replicate in mammals, a major obstacle to regeneration. However, in a paper last year, Felix Engel, PhD, and Mark Keating, MD, in the Department of Cardiology at Children's Hospital Boston, showed that they could coax cardiomyocytes to multiply in a petri dish by inhibiting an enzyme known as p38 MAP kinase, which normally suppresses cardiomyocyte replication. [See:]

Engel and Keating (Keating is now at the Novartis Institute for BioMedical Research) now build on this finding. They studied 120 rats, some with simulated heart attacks. After the injury, the animals were randomly assigned to receive injections with a p38 MAP kinase inhibitor alone, the angiogenesis stimulator FGF1 alone, both agents together, or saline (placebo) for four weeks. Three months later, rats that had received both FGF1 and the p38 MAP kinase inhibitor had markedly improved heart function, as measured on echocardiograms: their hearts pumped almost as well as the hearts of uninjured rats. They also had reduced thinning of the cardiac wall and the least amount of scarring.

Rats receiving only the p38 MAP kinase inhibitor had increased proliferation of cardiomyocytes, but no longer had improved heart function at three months. Those receiving only FGF1 maintained their functional improvement, but did not show as much cell proliferation as those receiving the p38 MAP kinase inhibitor. Rats receiving both agents had the greatest improvements in both cell proliferation and heart function.

The findings suggest that getting cardiomyocytes to replicate is not enough to rescue heart function, but that angiogenesis is also needed, Engel says.

"Regeneration is not just making more cardiomyocytes," he says. "Cardiomyocytes need a blood supply and oxygen to survive. FGF1 did not have a great effect on cell proliferation, but we found it was providing a new blood supply. If you just inhibit p38 MAP kinase, you don't get blood vessels."

Two important steps are needed to turn these findings into a treatment, Engel says. First is to show that the treatment works when not given immediately after the heart attack, since many people sustain progressive damage to their hearts from repeated minor infarctions. In this study, rats were treated soon after injury.

Second is the need to develop a safe delivery method. Because FGF1 stimulates angiogenesis, it has the potential for serious side effects if it goes to places other than the heart, possibly promoting tumor growth, for example. And the p38 MAP kinase inhibitor has been shown to damage the liver.

"Every treatment trying to induce proliferation of cardiomyocytes also carries a risk of inducing tumor growth, and thus you have to limit the time and location of treatment," Engel adds.

One possibility is to inject smaller doses of the agen ts into the damaged area of the heart in gel form, or instill them through a catheter, so that they would remain in the heart and be released slowly over time. Engel and colleagues recently reported another compound that stimulates cardiomyocyte proliferation (Chemistry and Biology, Sept. 2006), and others are under investigation.

"In the end, we'd like a treatment that could be given systemically," Engel says.

Source:Children's Hospital Boston

Related biology news :

1. Molecular messengers perform a crucial role in the ability of injured nerve cells to heal themselves
2. NASA technology helping injured US troops
3. Bone marrow stem cells may heal hearts even years after heart attacks
4. Mice with glowing hearts shed light on how hearts develop
5. Free-radical busting antioxidants might not promote healthy hearts
6. UT Southwestern researchers find gene mutation that leads to broken hearts
7. Adult stem cell research at UB targets damaged hearts
8. Newts which regrow their hearts
9. Mechanical artificial hearts can remove need for heart transplant by returning heart to normal
10. Mutation improves memory, may lead to memory-enhancing pill
11. Researchers feed tiny pills of RNA to planarians to identify genes essential for regeneration

Post Your Comments:

(Date:11/4/2015)... , November 4, 2015 ... market report published by Transparency Market Research "Home Security Solutions ... and Forecast 2015 - 2022", the global home security solutions ... bn by 2022. The market is estimated to expand ... from 2015 to 2022. Rising security needs among customers ...
(Date:10/29/2015)... 2015  Rubicon Genomics, Inc., today announced an ... its DNA library preparation products, including the ThruPLEX ... Plasma-seq kit. ThruPLEX Plasma-seq has been optimized for ... libraries for liquid biopsies--the analysis of cell-free circulating ... in cancer and other conditions. Eurofins Scientific is ...
(Date:10/27/2015)... 2015 Munich, Germany ... technology (ASGM) automatically maps data from mobile eye tracking ... , so that they can be quantitatively analyzed with ... Munich, Germany , October 28-29, 2015. SMI,s Automated ... mobile eye tracking videos created with SMI,s Eye ...
Breaking Biology News(10 mins):
(Date:11/25/2015)... (PRWEB) , ... November 25, 2015 , ... ... and the Organization of Black Aerospace Professionals (OPBAP) has been formalized with the ... other AMA team leaders met with OPBAP leaders Capt. Karl Minter and Capt. ...
(Date:11/25/2015)... ... November 25, 2015 , ... ... featured on AngelList early in their initial angel funding process. Now, they are ... individuals looking to make early stage investments in the microbiome space. In ...
(Date:11/24/2015)... 2015 Cepheid (NASDAQ: CPHD ) today ... following conference, and invited investors to participate via webcast. ...      Tuesday, December 1, 2015 at 11.00 a.m. Eastern Time ...      Tuesday, December 1, 2015 at 11.00 a.m. Eastern Time ... New York, NY      Tuesday, December 1, 2015 ...
(Date:11/24/2015)... ... November 24, 2015 , ... Copper is ... it is bound to proteins, copper is also toxic to cells. With a ... Polytechnic Institute (WPI) will conduct a systematic study of copper in the bacteria ...
Breaking Biology Technology: