Navigation Links
Replacing insulin is top-ranked breakthrough foreseen for health in developing world

Eliminating the need for costly insulin injections for diabetics, regenerating heart muscle after it fails, and improving resistance to disease by engineering immune cells top a list of 10 potential breakthroughs for health in developing countries seen emerging from the new world of regenerative medicine, according to a study published today in the prestigious journal Public Library of Science (PLoS) Medicine.

Conducted by University of Toronto researchers (from the McLaughlin Centre for Molecular Medicine, the Canadian Program on Genomics and Global Health, and the U of T Joint Centre for Bioethics), the study says regenerative medicine has the potential to help developing countries address a suite of disastrous health problems, foremost among them a diabetes epidemic.

However, the study notes that in developed countries, where most of the cutting-edge science research occurs today, health-related priorities differ greatly from those of developing countries, which therefore should develop their own expertise and capacity.

"Though largely neglected by the field of regenerative medicine to date, we suggest that developing countries could potentially benefit from advances in regenerative medicine to address the epidemic of non-communicable disease and other pressing health needs," the authors say.

Regenerative medicine combines know-how from diverse disciplines to repair, replace or regenerate cells, tissues or organs impaired by congenital defects, disease, trauma and other causes. It moves beyond traditional transplant and replacement therapies to include the use of stem cells, soluble molecules, genetic engineering, tissue engineering, and advanced cell therapy.

There is increasing research in regenerative medicine in both developed and developing countries. Already regenerative medicine has produced a skin substitute (Apligraf), a bone regenerating therapy (Osteocel) and other medical breakthroughs. An eye institute in Ind ia (L.V. Prasad) has used adult stem cell therapy to repair the corneas of over 125 blind patients; an estimated 60% of blindness in poor communities is treatable. Regenerative medicine holds the promise of more affordable treatments than corneal grafts and of offsetting shortages of donor material.

The study, the first of its kind:

  • Identifies and prioritizes applications of regenerative medicine that could effectively improve health in developing countries;
  • Assesses the feasibility of building developing countries' capacity in regenerative medicine, and
  • Offers recommendations for developed and developing countries alike.

An international panel of experts was involved in the study to identify the 10 most promising applications of regenerative medicine for improving health in developing countries. 35 of 44 experts in the study placed atop their list: "Novel methods of insulin replacement and pancreatic islet cell regeneration for diabetes."

Many panellists noted the heavy health, social and economic burdens that result from widespread diabetes in developing countries. Controlling that disease would consequently reduce complications such as blindness, heart disease, chronic kidney disease and diabetic ulcers, they noted, adding that repeated insulin treatments are costly and therefore inaccessible to many developing country patients.

The 2nd-ranked application, regenerating failed heart muscle using the patient's own cells, is being successfully tested in several countries and will help address fast-rising rates of heart disease in developing countries. In addition to saving lives, such therapies could reduce the cost of treating heart failure by avoiding immune rejection and costly immunosuppressive regimens.

The 3rd-ranked application: using engineered immune cells and novel vaccination strategies to improve immunity from infectious disease, would assist countless developing coun try victims, many of them their societies' youngest members.

These technologies could improve a person's ability to fight off infection and new strains of HIV/AIDS, tuberculosis, hepatitis, malaria and other common diseases.

The full Top 10 list is appended.

About the study

Some 44 international experts and clinicians from relevant fields ?three quarters of them from developing countries ?were canvassed using three rounds of the Delphi technique to reach consensus on the 10 most promising applications of regenerative medicine for improving health in developing countries.

They used six criteria in their rankings:

  • Burden: Will the application address some of the most pressing health needs of developing countries?
  • Impact: Will the application be an improvement over existing treatment options and have a clear impact towards improving health in developing countries?
  • Feasibility: Can the application reasonably be developed and deployed within a 10 year timeframe?
  • Affordability: Will the application be affordable to develop and/or use in developing countries?
  • Acceptability: Is the application safe, and socially, ethically, and legally acceptable?
  • Indirect Benefits: Does the application provide benefits, such as capacity building or economic benefits, which could indirectly improve health in developing countries?

Huge Numbers of Potential Patients Worldwide

A report from the US National Academies of Science, Stem Cells and the Future of Regenerative Medicine, estimates over 100 million potential US patients could benefit from such stem cell-based therapies, including victims of cardiovascular disease, auto-immune diseases, diabetes, cancer, neurodegenerative diseases and burns.

Chronic diseases, the primary targets of regenerative medicine, affect people at a younger age in developing than developed countries. They are also much more likely to be prevalent in the poor and have resulted in more deaths in 2005 than infectious disease, maternal and perinatal conditions, and nutritional deficiencies combined.

The authors say low and middle income countries as a group report 80% of all chronic disease deaths, over 95% of deaths due to infectious disease, and almost 90% of deaths due to injury and trauma.

Even though developing countries suffer more than developed countries from the medical problems targeted by regenerative medicine, "there has been no attempt to understand systematically how regenerative medicine could contribute to improving health in developing countries," the authors say.

Building Capacity in Developing Countries for Regenerative Medicine

While developed countries share large interests in treatments for such chronic illnesses as diabetes and heart disease, the developed world is relatively less concerned about finding applications to combat infectious diseases -- immune system enhancement and biocompatible blood substitutes that can be sterilized to avoid costly screening measures, for example.

"Whether developing countries choose to build capacity in regenerative medicine themselves or whether they wait to adopt therapies developed first elsewhere may depend both on their economic position and on the level of research attention a particular regenerative medicine application is receiving in industrialized nations. However, as highlighted in the 2005 report of the UN Task Force on Science, Technology, and Innovation, domestic innovation by developing countries is important as it is more likely to be targeted towards local health needs and can be a contributor to health and economic development," the authors say.

"In addition, previous studies of the health biotechnology sectors in developing countries have shown that local innovation in science and technology can lead to more affordable treatments for th e populations of developing countries.

India's Shantha Biotechnics, for instance, has developed a recombinant hepatitis B vaccine that sells for only $US O.40 per dose as compared to imported vaccines which sell for $US 8-10 per dose."

Leaders among developing countries in their level of regenerative medicine activity are India, China and Brazil.

The authors say the study results represent a potential guide for the policy formulation at international and bilateral aid agencies, and within developing countries.

And they recommend:

  • An initiative on Grand Challenges in Non-communicable Diseases, modelled on the success of Grand Challenges in Global Health initiative, sponsored in part by the Bill and Melinda Gates Foundation. The initiative would work to remove the barriers -- behavioural, scientific, and technological ?to preventing and managing non-communicable diseases. Establishment of such an initiative would encourage the regenerative medicine community to develop products and approaches that are applicable, affordable, and accessible to the developing world.

  • That governments of developing countries evaluate regenerative medicine technologies and investigate potential collaborations with both industrialized and developing countries as a way to build national capacity.

  • That industrialized country governments devote a portion of research and development spending to challenges facing developing countries. Such a commitment would provide the means to pursue the proposed Grand Challenges in Non-communicable Diseases initiative and provide incentives to develop regenerative medicine therapies that are relevant, accessible and affordable to the developing world.

"The threat of non-communicable diseases in developing countries has been largely ignored by the international community but these are now reaching epidemic proportions in many places, creating a difficult b urden for poor nations.

As with many other health technologies, for example vaccines, it is people in the developing world, where 90% of humankind lives, that may ultimately derive the most benefit," says senior responsible author Abdallah Daar, Director of Ethics and Policy of the U of T McLaughlin Centre for Molecular Medicine.

"While there are no easy solutions to the complex challenges facing developing countries, these technologies offer real promise in the field of health. It is a young field and there's great opportunity to shape it now while it is developing." says Heather Greenwood of the Canadian Program on Genomics and Global Health.

Says co-author Halla Thorsteinsdottir of the CPGGH: "Our recent study of developments in regenerative medicine indicate that researchers in, for example, India, are taking regenerative medicine very seriously and there are government policies meant to energize research in this field,"

Adds Peter Singer, Senior Scientist at the McLaughlin Centre for Molecular Medicine, who has been researching the commercialization of health technologies in developing countries and the many innovations being pursued by the private and academic sectors in China: "Just like cell phones have completely revolutionized communication in the developing world, biotechnology -- and in particular regenerative medicine -- could in the future provide new ways to deal with old health problems plaguing millions of people."


Source:University of Toronto Joint Center for Bioethics

Related biology news :

1. Stem Cell Research Shows Potential for Replacing Tissue Damaged in Heart Attacks
2. Poor prenatal nutrition permanently damages function of insulin-producing cells in the pancreas
3. PCRM develops worlds first cruelty-free insulin assay
4. Stem cells from brain transformed to produce insulin at Stanford
5. Mouse with designer liver has enhanced glucose tolerance, insulin response
6. Scientists find that protein controls aging by controlling insulin
7. UCSD study clarifies insulins role in blocking release of energy in patients with type II diabetes
8. New cell transplantation technique restores insulin production in diabetics
9. Hap1 protein links circulating insulin to brain circuits that regulate feeding behavior in mice
10. Recent breakthroughs in common adult leukemia highlighted in New England Journal of Medicine
11. MUHC researchers make cancer target breakthrough
Post Your Comments:

(Date:10/23/2015)... Oct. 23, 2015 Research and Markets ( ... "Global Voice Recognition Biometrics Market 2015-2019" report to ... --> The global voice recognition biometrics market to ... --> --> The ... prepared based on an in-depth market analysis with inputs ...
(Date:10/22/2015)... BEDFORD, Mass., Oct. 22, 2015  Aware, Inc. (NASDAQ: AWRE ... financial results for its third quarter ended September 30, 2015.  ... third quarter of 2015 was $4.0 million, a decrease of 33% ... income in the third quarter of 2015 was $2.2 million, or ... per diluted share, in the same period a year ago.  ...
(Date:10/22/2015)... , Oct. 22, 2015 About fingerprint ... fingerprint scan of an individual with the database to ... as arch, whorl, and loop. Pattern-based algorithms are used ... advances in technology, AFIS was introduced in 1986, which ... agencies to identify a criminal. Technavio,s analysts ...
Breaking Biology News(10 mins):
(Date:11/24/2015)... , November 24, 2015 SHPG ) announced ... in the Piper Jaffray 27 th Annual Healthcare Conference in ... 1, 2015, at 8:30 a.m. EST (1:30 p.m. GMT). --> ... Financial Officer, will participate in the Piper Jaffray 27 th ... NY on Tuesday, December 1, 2015, at 8:30 a.m. EST (1:30 ...
(Date:11/24/2015)... ... November 24, 2015 , ... In ... paramount. Insertion points for in-line sensors can represent a weak spot where leaking ... 781/784 series of retractable sensor housings , which are designed to tolerate extreme ...
(Date:11/24/2015)... 2015 HemoShear Therapeutics, LLC, a privately ... metabolic disorders, announced today the appointment of ... Directors (BOD). Mr. Watkins is the former president ... (HGS), and also served as the chairman of ... , Chairman and CEO of HemoShear Therapeutics. "The ...
(Date:11/23/2015)... , Nov. 24, 2015 Women with a certain ... exams face a higher risk of lung cancer than men ... next week at the annual meeting of the Radiological Society ... --> --> Lung nodules are ... as solid or subsolid based on their appearance on CT. ...
Breaking Biology Technology: