Navigation Links
Rensselaer researchers develop approach that predicts protein separation behavior

Applying math and computers to the drug-discovery process, researchers at Rensselaer Polytechnic Institute have developed a method to predict protein separation behavior directly from protein structure. This new multi-scale protein modeling approach may reduce the time it takes to bring pharmaceuticals to market and may have significant implications for an array of biotechnology applications, including bioprocessing, drug discovery, and proteomics, the study of protein structure and function.

"Predictive modeling is a new approach to drug discovery that takes information from lab analysis and concentrates it in predictive models that may be evaluated on a computer," said Curt M. Breneman, professor of chemistry and chemical biology at Rensselaer.

"The ability to predict the separation behavior of a particular protein directly from its structure has considerable implications for biotechnology processes," said Steven Cramer, professor of chemical and biological engineering at Rensselaer. "The research results thus far indicate that this modeling approach can be used to determine protein behavior for use in bioseparation applications, such as the protein purification methods used in drug discovery. This could potentially reduce the development time required to bring biopharmaceuticals to market."

The modeling technique is based on methods previously developed by Breneman's group for rapidly predicting the efficacy and side effects of small drug-like molecules. The newly developed model successfully predicted the amount of a protein that binds to a material under a range of conditions by using molecular information obtained from the protein structure. These predicted adsorption isotherm parameters then replicated experimental results by predicting the actual separation profile of proteins in chromatographic columns. Chromatography techniques are used to identify and purify molecules, in this case, particular proteins.

"We intend to test the model against more complicated protein structures as part of its further development," said Breneman. "The outcome of this work will yield fundamental information about the complex relationship between a protein's structural features and its chemical binding properties, and also aid in evaluating its potential biomedical applications."

The research findings are reported in the Aug. 16 issue of Proceedings of the National Academy of Sciences in a paper titled "A Priori Prediction of Adsorption Isotherm Parameters and Chromatographic Behavior in Ion-Exchange Systems."

In addition to Breneman and Cramer, the collaborative research team includes Asif Ladiwala and Kaushal Rege, who both recently earned doctorates in chemical and biological engineering at Rensselaer. The work was supported by the National Science Foundation and GE Healthcare.

The researchers' computational model uses a combination of molecular-level quantitative structure-property relationship models with macroscopic steric mass action isotherm models and support vector machine regression computations.

Biotechnology and Interdisciplinary Studies at Rensselaer

At Rensselaer, faculty and students in diverse academic and research disciplines are collaborating at the intersection of the life sciences and engineering to encourage discovery and innovation. Rensselaer's four biotechnology research constellations - biocatalysis and metabolic engineering, functional tissue engineering and regenerative medicine, biocomputation and bioinformatics, and integrative systems biology - engage a multidisciplinary mix of faculty and students focused on the application of engineering and physical and information sciences to the life sciences. Ranked among the world's most advanced research facilities, Rensselaer's Center for Biotechnology and Interdisciplinary Studies provides a state-of-the-art platform for collaborative research and world-class programs and symposia .

About Rensselaer

Rensselaer Polytechnic Institute, founded in 1824, is the nation's oldest technological university. The university offers bachelor's, master's, and doctoral degrees in engineering, the sciences, information technology, architecture, management, and the humanities and social sciences. Institute programs serve undergraduates, graduate students, and working professionals around the world. Rensselaer faculty are known for pre-eminence in research conducted in a wide range of fields, with particular emphasis in biotechnology, nanotechnology, information technology, and the media arts and technology. The Institute is well known for its success in the transfer of technology from the laboratory to the marketplace so that new discoveries and inventions benefit human life, protect the environment, and strengthen economic development.


'"/>

Source:Rensselaer Polytechnic Institute


Related biology news :

1. NYU researchers simulate molecular biological clock
2. Vital step in cellular migration described by UCSD medical researchers
3. ASU researchers finds novel chemistry at work to provide parrots vibrant red colors
4. UCSD researchers maintain stem cells without contaminated animal feeder layers
5. Why do insects stop breathing? To avoid damage from too much oxygen, say researchers
6. New protein discovered by Hebrew University researchers
7. First real-time view of developing neurons reveals surprises, say Stanford researchers
8. Agilent Technologies releases automated literature search tool for biology researchers
9. Self-assembled nano-sized probes allow Penn researchers to see tumors through flesh and skin
10. Yale researchers identify molecule for detecting parasitic infection in humans
11. US life expectancy about to decline, researchers say
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:3/3/2016)... 3, 2016  2016FLEX, organized by FlexTech, a ... advancements in flexible, hybrid and printed electronics. More ... - have gathered for short courses, technical session, ... electronics. The Flex Conference celebrates its 15 th ... R&D organizations, and universities contributing to the adoption ...
(Date:3/2/2016)... 2016 http://www.researchandmarkets.com/research/cmt3hk/global_biometrics ) ... "Global Biometrics as a Service Market 2016-2020" ... --> http://www.researchandmarkets.com/research/cmt3hk/global_biometrics ) has announced the ... a Service Market 2016-2020" report to ... and Markets ( http://www.researchandmarkets.com/research/cmt3hk/global_biometrics ) has announced ...
(Date:3/1/2016)... FRANCISCO , March 1, 2016  A new ... extends biometric authentication to the blockchain space to secure ... Bitcoin transactions that have ever been executed. ... assets with over 10,000 transactions on any given day ... enterprises to keep encrypted biometric data decentralized, offline and ...
Breaking Biology News(10 mins):
(Date:4/29/2016)... , April 29, 2016 ... Transparency Market Research "Separation Systems for Commercial Biotechnology ... Trends, and Forecast 2015 - 2023", the separation ... US$ 10,665.5 Mn in 2014 and is projected ... 2015 to 2023 to reach US$ 19,227.8 Mn ...
(Date:4/29/2016)... ... April 29, 2016 , ... Intelligent Implant Systems announced ... FDA via 510(k) for sale in the United States. These components expand the ... fusions. With one-level sales beginning in October of 2015, the company has seen ...
(Date:4/28/2016)... April 28, 2016 Q ... the Company,s CEO  was featured in an article ... When VCs Fear To Tread: http://www.lifescienceleader.com/doc/accelerators-enter-when-vcs-fear-to-tread-0001 ... magazine is an essential business journal for ... emerging biotechs to Big Pharmas. Their content is ...
(Date:4/28/2016)... ... April 28, 2016 , ... As part ... top industry experts, and expanding its LATAM network and logistics capabilities. Enhancements ... to manage their clinical trial projects. , The expansion will provide unmatched clinical ...
Breaking Biology Technology: