Navigation Links
Renegade RNA -- Clues to cancer and normal growth

Researchers at Johns Hopkins have discovered that a tiny piece of genetic code apparently goes where no bit of it has gone before, and it gets there under its own internal code.

A report on the renegade ribonucleic acid, and the code that directs its movement, will be published Jan. 5 in Science.

MicroRNAs, already implicated in cancer and normal development, latch on to and gum up larger strands of RNA that carry instructions for making the proteins that do all the cell's work. They are, says Joshua Mendell, M.D., Ph.D., an assistant professor in the McKusick-Nathans Institute of Genetic Medicine at Hopkins, like "molecular rheostats that fine-tune how much protein is being made from each gene."

That's why normally microRNAs always have appeared to stick close to the cell's protein-making machinery.

But during a survey of more than 200 of the 500 known microRNAs found in human cells, Mendell's team discovered one lone microRNA "miles away" --- in cellular terms --- from all the others.

"It was so clearly in the wrong place at the wrong time for what we thought it was supposed to be doing that we just had to figure out why," says Hun-Way Hwang, a graduate student in human genetics and contributor to the study.

Consisting of only 20 to 25 nucleotide building blocks (compared to other types of RNA that can be thousands of nucleotides long), each microRNA has a different combination of blocks. Mendell's team realized that six building blocks at the end of the wayward miR-29b microRNA were noticeably different from the ends of other microRNAs.

Suspicious that the six-block end might have something to do with miR-29b's location, the researchers chopped them off and stuck them on the end of another microRNA. When put into cells, the new microRNA behaved just like miR-29b, wandering far away from the cell's protein-making machinery and into the nucleus, where the cell's genetic material is kept.

< p>The researchers then stuck the same six-block end onto another type of small RNA, a small-interfering RNA or siRNA that turns off genes. This also forced the siRNA into the nucleus.

According to Mendell, these results demonstrate for the first time that despite their tiny size, microRNAs contain elements consisting of short stretches of nucleotide building blocks that can control their behavior in a cell. Mendell hopes to take advantage of the built-in "cellular zip code" discovered in miR-29b as an experimental tool. For example, he plans to force other microRNAs and siRNAs into the nucleus to turn off specific sets of genes.

Mendell's team is actively hunting for additional hidden microRNA elements that control other aspects of their behavior in cells. They also are curious to figure out what miR-29b is doing in the nucleus. Because microRNAs have been implicated in cancer as well as normal development, Mendell hopes that further study of miR-29b will reveal other, hidden functions of microRNAs.

Source:Johns Hopkins Medical Institutions

Related biology news :

1. Research on Worms Yields Clues on Aging
2. New Clues Add 40,000 Years to Age of Human Species
3. Clues to breast cancer hidden inside stem cells
4. Clues to gene expression in cystic fibrosis will guide research
5. Viral DNA sequence a possible trigger for breast cancer
6. Enzyme, lost in most mammals, is shown to protect against UV-induced skin cancer
7. Its not all genetic: Common epigenetic problem doubles cancer risk in mice
8. Columbia research lifts major hurdle to gene therapy for cancer
9. Combination therapy boosts effectiveness of telomere-directed cancer cell death
10. Mitochondrial DNA mutations play significant role in prostate cancer
11. New imaging method gives early indication if brain cancer therapy is effective, U-M study shows

Post Your Comments:

(Date:4/5/2017)... 2017  The Allen Institute for Cell Science today ... one-of-a-kind portal and dynamic digital window into the human ... first application of deep learning to create predictive models ... and a growing suite of powerful tools. The Allen ... future publicly available resources created and shared by the ...
(Date:4/4/2017)... , April 4, 2017   EyeLock LLC ... announced that the United States Patent and Trademark Office ... broadly covers the linking of an iris image with ... transaction) and represents the company,s 45 th issued ... patent is very timely given the multi-modal biometric capabilities ...
(Date:3/30/2017)... , March 30, 2017 The research team ... for three-dimensional (3D) fingerprint identification by adopting ground breaking 3D fingerprint ... new realm of speed and accuracy for use in identification, crime ... affordable cost. ... A ...
Breaking Biology News(10 mins):
(Date:10/10/2017)... , ... October 10, 2017 , ... Dr. Bob Harman, ... his local San Diego Rotary Club. The event entitled “Stem Cells ... and had 300+ attendees. Dr. Harman, DVM, MPVM was joined by two human ...
(Date:10/10/2017)... ... October 10, 2017 , ... The Pittcon Program Committee ... honoring scientists who have made outstanding contributions to analytical chemistry and applied ... the world’s leading conference and exposition for laboratory science, which will be held ...
(Date:10/9/2017)... ... October 09, 2017 , ... The Giving Tree Wellness ... targeting the needs of consumers who are incorporating medical marijuana into their wellness ... Arizona. , As operators of two successful Valley dispensaries, The Giving Tree’s two ...
(Date:10/7/2017)... , Oct. 6, 2017  The 2017 Nobel ... three scientists, Jacques Dubochet, Joachim Frank ... in cryo-electron microscopy (cryo-EM) have helped ... the structural biology community. The winners worked with ... now routinely produce highly resolved, three-dimensional images of ...
Breaking Biology Technology: