Navigation Links
Purdue researchers find key to rice blast fungus

Efforts to halt a fungus that deprives about 60 million people a year of food have led Purdue University scientists to discover the molecular machinery that enables the pathogen to blast its way into rice plants.

The fungus, Magnaporthe grisea, which is known as rice blast fungus, is the most deadly of the pathogens that attack rice, reducing yields by as much as 75 percent in infected areas. Learning how the fungus tricks rice's natural defenses against pathogens to penetrate the plant is an important part of controlling the disease, said Jin-Rong Xu, a Purdue molecular biologist.

Xu, Xinhua Zhao, Yangseon Kim and Gyungsoon Park, all of Purdue's Department of Botany and Plant Pathology, found that an enzyme is a key player in coordinating the fungus' attack. The enzyme, called a pathogenicity mitogen-activated protein (MAP) kinase, flips the switch that starts the cellular communication necessary to launch the fungal invasion that kills rice plants or causes loss of grain.

"We found that this MAP kinase controls the penetration process, which is the beginning of a signal transduction pathway," said Xu, who also was a member of an international research team that published the rice blast fungus genome in the April 21 issue of Nature. This pathway is the communications highway that passes information and instructions from one molecule to another to cause biochemical changes.

The fungus spreads when its spores are blown to rice plants and stick on the leaves. Once on the plant, the spore forms a structure called an appressorium. This bubble-like structure grows until it has so much pressure inside that it blasts through the plant's surface.

"The penetration structure has enormous force, called turgor pressure, that is 40 times the pressure found in a bicycle tire," Xu said. "It's like driving nails through the plant surface."

The researchers found that a pathway, which includes three genes that form a cascade of communica tion events, drives the infection process. Xu and his team reported that when they blocked the genes, the fungus couldn't develop appressoria and infect the plant.

The pathway holds enormous potential of being used to produce new fungicides or new resistant rice plants to hold this pathogen at bay. However, rice blast fungus is able to quickly evolve new tricks to tackle rice plants, apparently because the fungus and the grain developed side by side over centuries, according to genetic experts. To overcome the fungus' wiles, researchers need to know more than just the one pathway.

"We want to know how the plant and the fungus talk," Xu said. "We need to know the signal, or ligand, the rice plant gives to the receptor on the fungus that allows the penetration process to proceed. We need to understand the whole communication among all the genes in the rice blast penetration pathway before we can design a rice plant that resists this fungus."

Researchers already have some additional pieces of the puzzle gleaned from sequencing the rice blast genome. They learned that the pathogen has a unique family of proteins that acts as feelers to tell the fungus when it has a good host plant and how the plant might fight a fungal invasion. These feelers are called G-protein-coupled receptors (GPCR). In humans, GPCRs are found on the tongue and in the nose and are part of what makes foods taste different.

The scientists discovered that rice blast fungus has more than 40 GPCRs that probably are regulating the signals at the beginning of the penetration pathway.

"We are working on the basic infection process," Xu said. "We want to know what genetic mechanisms regulate this process, how the fungus spores recognize the plant surface, and how they know to penetrate it."

Once the fungus enters the rice leaf cells, the infected cells attempt to defend the plant by dying. This means death for young plants, while in older plants, rice grain is lost.

The biggest rice blast problem is in Asia and Latin America where rice is an important food staple. About two-thirds of the people in the world rely on the grain, according to the United States Department of Agriculture (USDA) Agricultural Research Service. Rice supplies 23 percent of the total calories that the world's population consumes, according to the International Rice Research Institute.

In addition to the countries that rely on rice for food, the pathogen also is found in the United States, especially in Arkansas, Louisiana and California, where rice blast recently evolved in order to foil a rice blast resistance gene, according to the USDA. Resistance in rice plants varies in different regions due to climate variation and in strains of the pathogen.

Xu said that an important area of his future research will be to learn the interaction among several signaling pathways in rice blast fungus that allows the pathogen to communicate with the plant.


'"/>

Source:Purdue University


Related biology news :

1. Purdue proves concept of using nano-materials for drug discovery
2. Purdue researchers use enzyme to clip DNA wires
3. Purdue scientists may have found key to halting spinal cord damage
4. Purdues gold nanorods brighten future for medical imaging
5. Purdue creates new low-cost system to detect bacteria
6. NYU researchers simulate molecular biological clock
7. Vital step in cellular migration described by UCSD medical researchers
8. ASU researchers finds novel chemistry at work to provide parrots vibrant red colors
9. UCSD researchers maintain stem cells without contaminated animal feeder layers
10. Why do insects stop breathing? To avoid damage from too much oxygen, say researchers
11. New protein discovered by Hebrew University researchers
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:4/5/2017)... Today HYPR Corp. , leading innovator ... of the HYPR platform is officially FIDO® Certified ... architecture that empowers biometric authentication across Fortune 500 enterprises ... over 15 million users across the financial services industry, ... product suites and physical access represent a growing portion ...
(Date:3/30/2017)... The research team of The Hong Kong ... identification by adopting ground breaking 3D fingerprint minutiae recovery and matching ... and accuracy for use in identification, crime investigation, immigration control, security ... ... A research team led by ...
(Date:3/24/2017)... , March 24, 2017 The Controller General ... Controller Mr. Abdulla Algeen have received the prestigious international IAIR ... Continue Reading ... ... picture) and Deputy Controller Abdulla Algeen (small picture on the right) have ...
Breaking Biology News(10 mins):
(Date:10/12/2017)... (PRWEB) , ... October 12, ... ... today announces publication of a United States multicenter, prospective clinical study that ... disposable, point-of-care diagnostic test capable of identifying clinically significant acute bacterial and ...
(Date:10/12/2017)... ... October 12, 2017 , ... AMRI, ... and biotechnology industries to improve patient outcomes and quality of life, will now ... testing are being attributed to new regulatory requirements for all new drug products, ...
(Date:10/11/2017)... ... 2017 , ... At its national board meeting in North ... the co-founder, CEO and chief research scientist of Minnesota-based Advanced Space Technology and ... ARCS Alumni Hall of Fame . ASTER Labs is a technology development ...
(Date:10/11/2017)... ... ... is a basic first aid supply for any work environment, but most personal eye wash ... if a dangerous substance enters both eyes? It’s one less decision, and likely quicker response ... piece. , “Whether its dirt and debris, or an acid or alkali, getting anything in ...
Breaking Biology Technology: