Navigation Links
Purdue researchers find key to rice blast fungus

Efforts to halt a fungus that deprives about 60 million people a year of food have led Purdue University scientists to discover the molecular machinery that enables the pathogen to blast its way into rice plants.

The fungus, Magnaporthe grisea, which is known as rice blast fungus, is the most deadly of the pathogens that attack rice, reducing yields by as much as 75 percent in infected areas. Learning how the fungus tricks rice's natural defenses against pathogens to penetrate the plant is an important part of controlling the disease, said Jin-Rong Xu, a Purdue molecular biologist.

Xu, Xinhua Zhao, Yangseon Kim and Gyungsoon Park, all of Purdue's Department of Botany and Plant Pathology, found that an enzyme is a key player in coordinating the fungus' attack. The enzyme, called a pathogenicity mitogen-activated protein (MAP) kinase, flips the switch that starts the cellular communication necessary to launch the fungal invasion that kills rice plants or causes loss of grain.

"We found that this MAP kinase controls the penetration process, which is the beginning of a signal transduction pathway," said Xu, who also was a member of an international research team that published the rice blast fungus genome in the April 21 issue of Nature. This pathway is the communications highway that passes information and instructions from one molecule to another to cause biochemical changes.

The fungus spreads when its spores are blown to rice plants and stick on the leaves. Once on the plant, the spore forms a structure called an appressorium. This bubble-like structure grows until it has so much pressure inside that it blasts through the plant's surface.

"The penetration structure has enormous force, called turgor pressure, that is 40 times the pressure found in a bicycle tire," Xu said. "It's like driving nails through the plant surface."

The researchers found that a pathway, which includes three genes that form a cascade of communica tion events, drives the infection process. Xu and his team reported that when they blocked the genes, the fungus couldn't develop appressoria and infect the plant.

The pathway holds enormous potential of being used to produce new fungicides or new resistant rice plants to hold this pathogen at bay. However, rice blast fungus is able to quickly evolve new tricks to tackle rice plants, apparently because the fungus and the grain developed side by side over centuries, according to genetic experts. To overcome the fungus' wiles, researchers need to know more than just the one pathway.

"We want to know how the plant and the fungus talk," Xu said. "We need to know the signal, or ligand, the rice plant gives to the receptor on the fungus that allows the penetration process to proceed. We need to understand the whole communication among all the genes in the rice blast penetration pathway before we can design a rice plant that resists this fungus."

Researchers already have some additional pieces of the puzzle gleaned from sequencing the rice blast genome. They learned that the pathogen has a unique family of proteins that acts as feelers to tell the fungus when it has a good host plant and how the plant might fight a fungal invasion. These feelers are called G-protein-coupled receptors (GPCR). In humans, GPCRs are found on the tongue and in the nose and are part of what makes foods taste different.

The scientists discovered that rice blast fungus has more than 40 GPCRs that probably are regulating the signals at the beginning of the penetration pathway.

"We are working on the basic infection process," Xu said. "We want to know what genetic mechanisms regulate this process, how the fungus spores recognize the plant surface, and how they know to penetrate it."

Once the fungus enters the rice leaf cells, the infected cells attempt to defend the plant by dying. This means death for young plants, while in older plants, rice grain is lost.

The biggest rice blast problem is in Asia and Latin America where rice is an important food staple. About two-thirds of the people in the world rely on the grain, according to the United States Department of Agriculture (USDA) Agricultural Research Service. Rice supplies 23 percent of the total calories that the world's population consumes, according to the International Rice Research Institute.

In addition to the countries that rely on rice for food, the pathogen also is found in the United States, especially in Arkansas, Louisiana and California, where rice blast recently evolved in order to foil a rice blast resistance gene, according to the USDA. Resistance in rice plants varies in different regions due to climate variation and in strains of the pathogen.

Xu said that an important area of his future research will be to learn the interaction among several signaling pathways in rice blast fungus that allows the pathogen to communicate with the plant.


Source:Purdue University

Related biology news :

1. Purdue proves concept of using nano-materials for drug discovery
2. Purdue researchers use enzyme to clip DNA wires
3. Purdue scientists may have found key to halting spinal cord damage
4. Purdues gold nanorods brighten future for medical imaging
5. Purdue creates new low-cost system to detect bacteria
6. NYU researchers simulate molecular biological clock
7. Vital step in cellular migration described by UCSD medical researchers
8. ASU researchers finds novel chemistry at work to provide parrots vibrant red colors
9. UCSD researchers maintain stem cells without contaminated animal feeder layers
10. Why do insects stop breathing? To avoid damage from too much oxygen, say researchers
11. New protein discovered by Hebrew University researchers
Post Your Comments:

(Date:11/20/2015)... -- NXTD ) ("NXT-ID" or the "Company"), ... commerce market and creator of the Wocket® smart wallet, ... interviewed on The RedChip Money Report television ... Bloomberg Europe , Bloomberg Asia, Bloomberg Australia, and ... ) ("NXT-ID" or the "Company"), a biometric authentication company ...
(Date:11/19/2015)... MOUNTAIN VIEW, Calif. , Nov. 19, 2015 /PRNewswire/ ... authentication market, Frost & Sullivan recognizes BIO-key with the ... Strategy Leadership. Each year, Frost & Sullivan presents this ... comprehensive product line catering to the needs of the ... which the product line meets and expands on customer ...
(Date:11/19/2015)... , Nov. 19, 2015  Although some 350 ... is dominated by a few companies, according to Kalorama ... own 51% of the market share of the 6.1 ... The World Market for Molecular Diagnostic s . ... "The market is still controlled by one company and ...
Breaking Biology News(10 mins):
(Date:11/24/2015)... 24, 2015 SHPG ) announced today that ... Piper Jaffray 27 th Annual Healthcare Conference in ... at 8:30 a.m. EST (1:30 p.m. GMT). --> SHPG ... will participate in the Piper Jaffray 27 th Annual Healthcare ... Tuesday, December 1, 2015, at 8:30 a.m. EST (1:30 p.m. GMT). ...
(Date:11/24/2015)... 24, 2015  Tikcro Technologies Ltd. (OTCQB: TIKRF) today announced that its ... at 11:00 a.m. Israel time, at the law ... Allon Street, 36 th Floor, Tel Aviv, Israel ... and Izhak Tamir to the Board of Directors; ... directors; , approval of an amendment to certain terms of options ...
(Date:11/24/2015)... Nov. 24, 2015  Twist Bioscience, a company ... Leproust, Ph.D., Twist Bioscience chief executive officer, will ... on December 1, 2015 at 3:10 p.m. Eastern ... City. --> --> ... Twist Bioscience is on Twitter. Sign up to ...
(Date:11/24/2015)... ... ... InSphero AG, the leading supplier of easy-to-use solutions for production, culture, and assessment ... Chief Operating Officer. , Having joined InSphero in November 2013 as Business ... to Head of InSphero Diagnostics in 2014. There she has built up the ...
Breaking Biology Technology: