Navigation Links
Protein splicing upsets the DNA colinearity paradigm

Understanding medical research problems often relies on the direct, linear relationship between the sequence of a protein and the DNA encoding that protein. In fact, colinearity of DNA and protein sequences is thought to be a fundamental feature of the universal genetic code. However, a paper published today in Science by a team from the Brussels Branch of the global Ludwig Institute for Cancer Research (LICR) and the Seattle-based Fred Hutchinson Cancer Research Center (FHCRC), shows that a protein can be rearranged so that it is no longer colinear with its encoding DNA.

Genes have stretches of (protein) coding DNA sequences interspersed with stretches of non-coding DNA sequences. The first step in making the protein is the faithful transcription of the entire gene's sequence into an RNA sequence. The RNA is then 'spliced' such that the non-coding sequences are removed and the coding sequences are assembled in a linear fashion to form the template for translation from RNA to protein.

"Until now it was thought that colinearity of DNA and protein sequences was only interrupted by RNA splicing," says LICR's Dr. Benoit Van den Eynde, the study's senior author. "This new study shows that protein splicing also occurs, and may even result in protein fragments, or peptides, being spliced together in the order opposite to that which occurs in the parental protein."

According to Dr. Van den Eynde, this novel phenomenon occurs during the physiological function of 'antigen processing,' which produces antigenic peptides; the 'red flags' that mark cells for destruction by the immune system.

The immune system attacks 'foreign' cells - be they tumor cells, virally infected, or donated by another person - when T lymphocytes recognize antigenic peptides displayed on the cell surface. The antigens are created by 'proteasomes,' components of the cell machinery that cut foreign proteins into peptides that are then displayed on the cell surface fo r recognition and destruction by CD8+ T lymphocytes. However, the Belgium/USA team has found that proteasomes can also splice the peptide fragments together in a reverse order to that encoded by the protein's DNA sequence template. This takes the possible number of antigens from any one protein into potentially thousands of sequence configurations.

The sequence of the first human cancer-specific antigen, which was identified at the LICR Brussels Branch, has allowed the development of antigen-specific cancer vaccines that are in clinical trials around the world. This study describes a mechanism that significantly extends the number of antigenic peptides that can be produced from a single protein, and therefore widens the applicability of peptide vaccines against cancer and infectious diseases.
'"/>

Source:Ludwig Institute for Cancer Research


Related biology news :

1. Quantum Dots Research Leads to New Knowledge about Protein Binding in Plants
2. Protein discovery could unlock the secret to better TB treatment
3. Researchers Uncover Key Step In Manufacture of Memory Protein
4. An HIV Protein Plays a Surprising Role in Gene Activation
5. Protein Packages Found To Activate Genes; May Be What Regulates Development And Disease
6. New SARS Protein Linked To Important Cell Doorway
7. The Shapes Of Life: NIGMS Project Yields More Than 1,000 Protein Structures
8. PANTHER Protein Classification System Database 5.0
9. Duke Chemists Isolating Individual Molecules Of Toxic Protein In Alzheimers, Parkinsons Disease
10. Newly Discovered Compound Blocks Known Cancer-Causing Protein
11. UF Researchers Map Bacterial Proteins That Cause Tooth Loss

Post Your Comments:
*Name:
*Comment:
*Email:


(Date:4/26/2016)... LONDON , April 26, 2016 ... EdgeVerve Systems, a product subsidiary of Infosys (NYSE: ... a partnership to integrate the Onegini mobile security ... (Logo: http://photos.prnewswire.com/prnh/20151104/283829LOGO ) The ... enhanced security to access and transact across channels. ...
(Date:4/19/2016)... April 20, 2016 The new ... a compact web-based "all-in-one" system solution for all door ... reader or the door interface with integration authorization management ... control systems. The minimal dimensions of the access control ... the building installations offer considerable freedom of design with ...
(Date:4/15/2016)... , April 15, 2016 ... the,  "Global Gait Biometrics Market 2016-2020,"  report to ... http://photos.prnewswire.com/prnh/20160330/349511LOGO ) , ,The global gait biometrics ... of 13.98% during the period 2016-2020. ... angles, which can be used to compute factors ...
Breaking Biology News(10 mins):
(Date:6/24/2016)... discussions on a range of subjects including policies, debt and ... Poloz. Speaking at a lecture to the Canadian ... to the country,s inflation target, which is set by both ... "In certain areas there needs to be ... why not sit down and address strategy together?" ...
(Date:6/24/2016)... ... ... While the majority of commercial spectrophotometers and fluorometers use the z-dimension of 8.5 ... end machines that use the more unconventional z-dimension of 20mm. Z-dimension or ... the cuvette holder. , FireflySci has developed several Agilent flow cell product lines ...
(Date:6/23/2016)... ... June 23, 2016 , ... Mosio, ... second eBook, “Clinical Trials Patient Recruitment and Retention Tips.” Partnering with experienced clinical ... eBook by providing practical tips, tools, and strategies for clinical researchers. , “The ...
(Date:6/23/2016)... , June 23, 2016   Boston ... of novel compounds designed to target cancer stemness ... has been granted Orphan Drug Designation from the ... treatment of gastric cancer, including gastroesophageal junction (GEJ) ... inhibitor designed to inhibit cancer stemness pathways by ...
Breaking Biology Technology: