Navigation Links
Protein receptor cools passion of 'kiss and run' nerve cells

A new subtlety in the process of how the body's nervous system relays information may hinge on how "wet" the "kiss" is when one neuron fires a packet of neurotransmitter across a synapse to a receptive nerve cell.

A team of neuroscientists led by University of Illinois at Chicago biology professor Simon Alford report the finding in the March 14 issue of the Proceedings of the National Academy of Sciences.

"Until recently, the neuroscience field was solidly behind the idea that these little packets, or vesicles, either released all or none of their neurotransmitter into the synaptic cleft," said Alford. "We've identified a specific molecular mechanism that targets the machinery that causes the fusion process and found that instead of an all-or-none release, the vesicle just kisses the cell's presynaptic membrane. Neuroscientists call it 'kiss and run.' When it does it, our lab has now shown that only a little bit of neurotransmitter is released.

"This is important for the cell because it implies that we can change the degree of information that's passed through the synapse every time it's fired," said Alford.

The process involves a receptor protein on a pre-synaptic nerve cell -- the side that fires the packet of neurotransmitter -- that is affected by 5-hydroxytryptamine, or 5-HT, a body chemical often associated with mood. When 5-HT binds to this cell receptor, it activates something called a G protein that is made of two subunits -- one called alpha, the other beta-gamma. When these subunits are released, they activate the next step in a chain of events that move signal information through the nerve cell.

Alford's lab previously discovered that the beta-gamma subunit affects the molecular machinery that causes release of neurotransmitter -- the amino acid glutamate.

"It's very fast," said Alford. "You turn on a G protein, and it immediately targets the mechanism to modify release."

On the receiving cell, the p ost-synaptic side, there is a range of protein receptors that vary in sensitivity to the amount of neurotransmitter that's released. Some scientists think if the release of neurotransmitter can be controlled to take into account the sensitivity and roles played by post-synaptic receptors, new drugs for treating a range of neurological conditions might be developed.

Alford thinks that controlling agent may turn out to be 5-HT.

"When you release 5-HT onto the terminal (pre-synaptic) cell, you can switch the relative activation of different receptors on the post-synaptic cell," he said. "You don't just change the amount of neurotransmitter released, but you change what's activated -- the balance of different things that are activated in the next cell down the chain. In a sense, it's like you've turned a channel."

Heidi Hamm, professor and chair of pharmacology at Vanderbilt University, is a co-author of the PNAS paper. Other authors are Huzefa Photowala, Trillium Blackmer and Eric Schwartz, all former graduate students or post-doctoral researchers in Alford's UIC laboratory.


'"/>

Source:University of Illinois at Chicago


Related biology news :

1. Quantum Dots Research Leads to New Knowledge about Protein Binding in Plants
2. Protein discovery could unlock the secret to better TB treatment
3. Researchers Uncover Key Step In Manufacture of Memory Protein
4. An HIV Protein Plays a Surprising Role in Gene Activation
5. Protein Packages Found To Activate Genes; May Be What Regulates Development And Disease
6. New SARS Protein Linked To Important Cell Doorway
7. The Shapes Of Life: NIGMS Project Yields More Than 1,000 Protein Structures
8. PANTHER Protein Classification System Database 5.0
9. Duke Chemists Isolating Individual Molecules Of Toxic Protein In Alzheimers, Parkinsons Disease
10. Newly Discovered Compound Blocks Known Cancer-Causing Protein
11. UF Researchers Map Bacterial Proteins That Cause Tooth Loss
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:6/22/2016)... June 22, 2016   Acuant , ... verification solutions, has partnered with RightCrowd ® ... for Visitor Management, Self-Service Kiosks and Continuous ... that add functional enhancements to existing physical ... and venues with an automated ID verification ...
(Date:6/16/2016)... June 16, 2016 The ... expected to reach USD 1.83 billion by 2024, ... Research, Inc. Technological proliferation and increasing demand in ... expected to drive the market growth. ... The development of advanced multimodal techniques for ...
(Date:6/7/2016)... -- Syngrafii Inc. and San Antonio Credit Union (SACU) ... Syngrafii,s patented LongPen™ eSignature "Wet" solution into SACU,s ... in greater convenience for SACU members and operational ... document workflow and compliance requirements. Logo ... Highlights: ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... 27, 2016  Liquid Biotech USA ... of a Sponsored Research Agreement with The University ... (CTCs) from cancer patients.  The funding will be ... correlate with clinical outcomes in cancer patients undergoing ... then be employed to support the design of ...
(Date:6/24/2016)... SAN DIEGO , June 24, 2016 /PRNewswire/ ... that more sensitively detects cancers susceptible to PARP ... individual circulating tumor cells (CTCs). The new test ... of HRD-targeted therapeutics in multiple cancer types. ... therapies targeting DNA damage response pathways, including PARP, ...
(Date:6/23/2016)... Seattle, WA (PRWEB) , ... June 23, 2016 ... ... technology, announces the release of its second eBook, “Clinical Trials Patient Recruitment and ... patient recruitment and retention in this eBook by providing practical tips, tools, and ...
(Date:6/23/2016)... TORONTO , June 23, 2016 /PRNewswire/ - ... Ontario biotechnology company, Propellon ... the development and commercialization of a portfolio of ... cancers. Epigenetic targets such as WDR5 represent an ... contribute significantly in precision medicine for cancer patients. ...
Breaking Biology Technology: