Navigation Links
Protein averts cell suicide but might contribute to cancer

Scientists have discovered how an unusual protein helps a cell bypass damage when making new DNA, thereby averting the cell's self-destruction.

But they also discovered that this protein, an enzyme called Dpo4, often makes errors when copying the genomic DNA sequence that later might cause the cell to become cancerous.

The findings by researchers with Ohio State University 's Comprehensive Cancer Center are described in two back-to-back papers in The Journal of Biological Chemistry.

"Unrepaired DNA damage presents a big roadblock for the DNA replication machinery, which cannot go around it," says Zucai Suo, assistant professor of biochemistry. "This damage will trigger cell death because the DNA is not replicated.

"This protein bypasses the damage and saves cells from self-destructing, but it is very error prone, which suggests that it may also play a role in cancer."

Dpo4 is one of a family of enzymes called Y-family DNA polymerases that were first discovered about 10 years ago and are only now becoming understood.

"These enzymes provide a survival mechanism for cells," says first author Kevin Fiala, a graduate student in Suo's laboratory. "They allow DNA replication to continue, so the cell doesn't die. But they don't repair the DNA damage that exists."

DNA damage is a routine problem for cells, Suo says. For example, every cell loses more than 10,000 DNA bases daily. Dedicated repair enzymes fix 80 percent or more of this damage, but the rest remains.

Cells use Y-family enzymes to bypass that remaining damage when making new DNA prior to cell division, thus forcing these enzymes to copy damaged DNA.

How these bypass enzymes work, however, isn't known. The Dpo4 protein used in this research comes from a microorganism. It is relatively easy to produce in large quantities and to study, and it is similar to one of the four such enzymes found in humans.

For this research, Fiala developed a new way to sequence very short lengths of DNA. "This allowed us to pin down exactly what mistakes Dpo4 makes," he says.

The findings reveal why the enzyme makes mistakes.

DNA resembles a spiral staircase that is made from separate halves, with half-steps protruding from each. The half-steps fit together down the center to form the complete staircase.

In DNA, the half-steps are known as the bases ?the ‘A's, ‘C's, ‘G's and ‘T's ?that run the length of a DNA helix. A complete step is formed by pairs of bases according to a rule: ‘A' always pairs with ‘T,' and ‘C' always pairs with ‘G.'

When cells make new DNA, the two strands separate, and each old half becomes a template for a new partner. The DNA-making machinery travels along the old half, building the new half according to the bases it finds on the old half. When it meets an ‘A' on the old half, it pairs it with a ‘T' on the new half (and vice versa); when it meets a ‘G' on the old half, it pairs it with a ‘C' on the new strand. In the end, there are two complete DNA molecules instead of one, each made up of an old half and a new half.

But trouble arises during the building if one of the bases ?one of the half steps ?is missing. When the DNA replication machine encounters the gap, it stalls. If the standstill continues, the cell will self-destruct.

It's at this point when Dpo4 jumps in. It adds a base opposite the gap and then leaves, allowing the DNA-making machinery to bypass the damage and continue construction.

The action averts cell suicide, but the gap ?and the stop-gap base ?might become a mutation that, in conjunction with later genetic damage, causes the cell to eventually become cancerous.

"The objective of this enzyme is to allow replication to continue, not to repair the damage," says Fiala. The damage will persist, and cells might try to repair it later. But as long as DNA replication can continue, the cell survives."

Currently, Suo's laboratory is investigating human Y-family DNA polymerases.
'"/>

Source:Ohio State University


Related biology news :

1. Quantum Dots Research Leads to New Knowledge about Protein Binding in Plants
2. Protein discovery could unlock the secret to better TB treatment
3. Researchers Uncover Key Step In Manufacture of Memory Protein
4. An HIV Protein Plays a Surprising Role in Gene Activation
5. Protein Packages Found To Activate Genes; May Be What Regulates Development And Disease
6. New SARS Protein Linked To Important Cell Doorway
7. The Shapes Of Life: NIGMS Project Yields More Than 1,000 Protein Structures
8. PANTHER Protein Classification System Database 5.0
9. Duke Chemists Isolating Individual Molecules Of Toxic Protein In Alzheimers, Parkinsons Disease
10. Newly Discovered Compound Blocks Known Cancer-Causing Protein
11. UF Researchers Map Bacterial Proteins That Cause Tooth Loss

Post Your Comments:
*Name:
*Comment:
*Email:


(Date:6/22/2016)... 22, 2016   Acuant , the ... solutions, has partnered with RightCrowd ® ... Visitor Management, Self-Service Kiosks and Continuous Workforce ... add functional enhancements to existing physical access ... venues with an automated ID verification and ...
(Date:6/20/2016)... June 20, 2016 Securus Technologies, a ... solutions for public safety, investigation, corrections and monitoring ... involved, it has secured the final acceptance by ... for Managed Access Systems (MAS) installed. Furthermore, Securus ... to be installed by October, 2016. MAS distinguishes ...
(Date:6/9/2016)... , June 9, 2016  Perkotek an innovation leader in attendance control systems ... seamlessly log work hours, for employers to make sure the right employees are actually ... http://photos.prnewswire.com/prnh/20160609/377486LOGO ... ... ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... NC (PRWEB) , ... June 27, 2016 , ... ... mission to bring innovative medical technologies, services and solutions to the healthcare market. ... and implementation of various distribution, manufacturing, sales and marketing strategies that are necessary ...
(Date:6/27/2016)... , June 27, 2016   Ginkgo Bioworks , ... industrial engineering, was today awarded as one of ... of the world,s most innovative companies. Ginkgo Bioworks ... for the real world in the nutrition, health ... work directly with customers including Fortune 500 companies ...
(Date:6/24/2016)... , ... June 24, 2016 , ... While the majority ... as the Cary 5000 and the 6000i models are higher end machines that use ... height of the spectrophotometer’s light beam from the bottom of the cuvette holder. ...
(Date:6/23/2016)... , ... June 23, 2016 , ... ... pleased to announce the launch of their brand, UP4™ Probiotics, into Target stores ... 35 years, is proud to add Target to its list of well-respected retailers. ...
Breaking Biology Technology: