Navigation Links
Producing medicines in plant seeds

Using plants to produce useful proteins could be an inexpensive alternative to current medicine production methods. Researchers from the Flanders Interuniversity Institute for Biotechnology (VIB) at Ghent University have succeeded in producing in plant seeds proteins that have a very strong resemblance to antibodies. They have also demonstrated that these antibody variants are just as active as the whole antibodies that occur naturally in humans. By virtue of their particular action, antibodies are very useful for therapeutic and diagnostic applications. From this research, it is now also clear that these kinds of antibody variants can be used in medical applications and that it is possible to produce them in the seeds of plants, which can have enormous advantages over conventional production methods.

Production of biotech medicines

A large number of today's medicines are made with the aid of biotechnology (and this number should only grow in the future). To do this, scientists use genetically modified bacteria, yeasts, or animal cells that are able to produce human proteins. These proteins are then purified and administered as medicines. Examples of such proteins are antibodies, which can be used, for instance, in the treatment of cancer. The conventional methods for producing antibodies work well, but they are expensive and have a limited production capacity. The high costs are primarily due to the need for well-equipped production labs and to the labor-intensive upkeep of the animal cells, which are needed as production units.

Plants: a possible alternative?

For a number of years now, the VIB researchers in Ghent - Bart Van Droogenbroeck, Ann Depicker and Geert De Jaeger- have been searching for ways to have plants produce useful proteins efficiently. Plants do offer a lot of advantages over conventional production methods. Because production with plants doesn't require expensive high-tech laboratories, scientists anticipate that, by working with plants, production costs will be 10 to 100 times lower. Another important advantage is that large-scale production is possible without having to make additional investments in expensive fermentors.

A good yield guaranteed

Several years ago, Geert De Jaeger and his colleagues succeeded in achieving a high yield of an antibody variant in plants, which had been very difficult to do up to that time. The trick the researchers used was to modify the plants in such a way that they would produce the antibody variant in their seeds. With their special technique, the scientists succeeded in producing seeds in which the desired protein is good for more than one third of the total protein amount. This is a huge proportion compared to other systems - normally, scientists succeed in replacing only 1% of the plant's proteins by the desired protein.

Plant seeds are especially attractive as production units. In addition to a high production capacity, they offer other important advantages over other parts of the plant. The seeds can be stored for a long time without losing the produced protein's effectiveness, so that a reserve can always be kept on hand. This means that the proteins can be isolated from the seeds at the moment that they are actually needed. With production in leaves, for example - or with conventional production methods - such lengthy storage is not possible: the protein must be isolated immediately after production. So, production in plant seeds provides the clear advantage of timely processing.

High production of an efficient antibody variant

The antibody variant that has been produced by Geert De Jaeger and his team has a very simple structure and has only one binding place for a particular substance. Bart Van Droogenbroeck and his colleagues, under the direction of Ann Depicker, are now showing that it is also possible to produce more complex antibody variants in la rge quantities in the seeds of the Arabidopsis plant. Over 10% of the proteins in the seeds of these plants are the desired antibody variant. As is the case with whole antibodies, these more complex antibody variants have two binding places for a specified substance. This close similarity to whole antibodies makes these antibody variants extremely useful for therapeutic and diagnostic applications.

However, the production of proteins in plants is completed in a different way than in humans. Therefore, to be certain that this different completion process does not affect the effectiveness of the potential medicine; the scientists have subjected the action of the antibody variant to an exhaustive battery of tests. These laboratory tests have shown that the antibody variants produced in plants are just as effective as whole human antibodies in protecting animal cells against infection with the Hepatitis A virus.

This is a significant step forward in making protein production in plants a real alternative to current production methods.

Source:VIB, Flanders Interuniversity Institute of Biotechnology

Related biology news :

1. Producing bio-ethanol from agricultural waste a step closer
2. MIT chemist discovers secret behind natures medicines
3. Protect patients from exploitation by alternative medicines industry
4. Key molecule in plant photo-protection identified
5. Transplantation Of Monkey Embryonic Stem Cells Reverses Parkinson Disease In Primates
6. Emory Eye Center Implants Its First Retinal Chips In Patients With Retinitis Pigmentosa
7. Circles Of DNA Might Help Predict Success Of Stem Cell Transplantation
8. Antibodies from plants protect against anthrax
9. New RNA polymerase discovered in plants
10. Implanted Devices Detect High-Risk Heart Failure Patients
11. Ophthalmologists implant five patients with artificial silicon retina microchip

Post Your Comments:

(Date:11/12/2015)... 2015   Growing need for low-cost, easy ... been paving the way for use of biochemical ... analytes in clinical, agricultural, environmental, food and defense ... in medical applications, however, their adoption is increasing ... continuous emphasis on improving product quality and growing ...
(Date:11/10/2015)... , Nov. 10, 2015 ... biometrics that helps to identify and verify the ... is considered as the secure and accurate method ... of a particular individual because each individual,s signature ... results especially when dynamic signature of an individual ...
(Date:11/4/2015)... --> --> ... Transparency Market Research "Home Security Solutions Market - Global Industry ... 2022", the global home security solutions market is expected to reach ... market is estimated to expand at a CAGR of ... Rising security needs among customers at homes, the emergence ...
Breaking Biology News(10 mins):
(Date:11/24/2015)... --> --> ... by Transparency Market Research, the global non-invasive prenatal testing ... 17.5% during the period between 2014 and 2022. The ... Analysis, Size, Volume, Share, Growth, Trends and Forecast 2014 ... to reach a valuation of US$2.38 bn by 2022. ...
(Date:11/24/2015)... , Nov. 24, 2015 /PRNewswire/ - Aeterna Zentaris ... today that the remaining 11,000 post-share consolidation (or ... Warrants (the "Series B Warrants") subject to the ... on November 23, 2015, which will result in ... giving effect to the issuance of such shares, ...
(Date:11/24/2015)... Switzerland (PRWEB) , ... November 24, 2015 , ... ... plant and the environment are paramount. Insertion points for in-line sensors can represent ... has developed the InTrac 781/784 series of retractable sensor housings , which ...
(Date:11/24/2015)... ... November 24, 2015 , ... Creation Technologies ... being named to Deloitte's 2015 Technology Fast 500 list of the fastest growing ... a FDA-cleared, Class II medical device that speeds up orthodontic tooth movement by ...
Breaking Biology Technology: