Navigation Links
Producing bio-ethanol from agricultural waste a step closer

Research conducted by Delft University of Technology has brought the efficient production of the environmentally-friendly fuel bio-ethanol a great deal closer to fruition. The work of Delft researcher Marko Kuyper was an important factor in this. His research in recent years has greatly improved the conversion of certain sugars from agricultural waste to ethanol. On Tuesday 6 June, Kuyper received his PhD degree for his research into the subject.

The search for alternatives to the current, oil-based, fuels is the focus of great interest around the world. One of the most attractive alternatives is bio-ethanol - alcohol produced from agricultural crops. At present, bio-ethanol is only made from sugars derived from corncobs, sugar beets, grain and sugarcane, with the help of baker's yeast. A great number of by-products result from the cultivation of these crops, such as straw and corn husks. It would be a major step forward if this leftover material, which also largely consists of sugar, could be used for the production of bio-ethanol. This would allow agricultural land to be used more efficiently and at the same time prevent competition with food supplies.

Until recently, the problem was that the complex mixture of sugars that makes up these leftover materials could not be efficiently converted into ethanol by the baker's yeast. Delft University of Technology, however, has recently devised a solution for this, which is achieved by genetically modifying the baker's yeast. The Delft researchers have inserted a gene (derived from a fungus that is found in elephant faeces) into baker's yeast, allowing it to convert an important sugar type, xylose, into ethanol, thereby making the production of bio-ethanol from supplies of leftover materials possible.

During his recent PhD research, Marko Kuyper greatly improved this method: people can now start using agricultural waste products that contain sugar to produce bio-ethanol on an industrial scale. Del ft University of Technology and the Kluyver Centre for Genomics of Industrial Fermentation are working together on this project with Royal Nedalco and BIRD Engineering. These parties expect to achieve large-scale industrial implementation within 5 years.


Source:Delft University of Technology

Related biology news :

1. Producing medicines in plant seeds
2. Oceans more vulnerable to agricultural runoff than previously thought, study finds
3. White blood cell waste disposal system plays critical regulatory role
4. Microbial fuel cell: High yield hydrogen source and wastewater cleaner
5. Corn waste potentially more than ethanol
6. Cure for cancer one step closer
Post Your Comments:

(Date:11/12/2015)... -- A golden retriever that stayed healthy despite having the ... a new lead for treating this muscle-wasting disorder, report ... MIT and Harvard and the University of São Paolo ... Cell, pinpoints a protective gene that boosts muscle ... Boston Children,s lab of Lou Kunkel , PhD, ...
(Date:11/10/2015)... LONDON , Nov. 10, 2015 /PRNewswire/ ... segmented on the basis of product, type, ... segments included in this report are consumables, ... this report are safety biomarkers, efficacy biomarkers, ... in this report are diagnostics development, drug ...
(Date:11/4/2015)... New York , November 4, 2015 ... to a new market report published by Transparency Market ... Share, Growth, Trends and Forecast 2015 - 2022", the global ... of US$ 30.3 bn by 2022. The market is ... the forecast period from 2015 to 2022. Rising security ...
Breaking Biology News(10 mins):
(Date:11/23/2015)... --  Ceres, Inc . (Nasdaq: CERE ), an ... fiscal year ended August 31, 2015 and provided an ... --> During fiscal year 2015, Ceres refocused ... a better balance of yield, energy and nutrition. Among ... leading crop input providers and made significant progress in ...
(Date:11/23/2015)... ... November 23, 2015 , ... Shimadzu ... of its Nexera UC Unified Chromatography system. The award from R&D magazine recognizes ... products of the year in the analytical and testing category. R&D Magazine chose ...
(Date:11/23/2015)... GENEVA , November 23, 2015 ... to develop daclatasvir for 112 ... countries   --> --> ... licence for a hepatitis C medicine, signing an agreement with ... proven to help cure multiple genotypes of the HCV virus. ...
(Date:11/23/2015)... -- biochar market is estimated to ... is expected to grow with a CAGR of 17.1% ... of the global market include improved soil fertility and ... government initiatives and stringent environmental regulations, and waste management ... are the key drivers for the growth of the ...
Breaking Biology Technology: