Navigation Links
Primitive yeast yields secrets of human cholesterol and drug metabolism

By first probing the way primitive yeast make cholesterol, a team of scientists has discovered a long-sought protein whose human counterpart controls cholesterol production and potentially drug metabolism.

The collaborative study by investigators at Johns Hopkins University School of Medicine, Vanderbilt University, Indiana University and Eli Lilly Co., was published in the February issue of Cell Metabolism.

“Dap1 controls the activity of a clinically important class of enzymes required for cholesterol synthesis and drug metabolism,?says Peter Espenshade, Ph.D., assistant professor of cell biology at Johns Hopkins. “We’re excited because although we originally identified this protein in yeast, humans not only have the same protein, but it works the same way.?

The search for Dap1 began with the hunt for factors that influence the actions of a large family of enzymes called cytochrome P450. These enzymes control many life-sustaining chemical reactions in humans and other animals.

Happily, Espenshade says, yeast have only two P450 enzymes, and both play roles in making cholesterol, narrowing down the territory for their search and giving them a telltale marker (the cholesterol) to track.

Reasoning that whatever controls the P450s likely would be turned on and off at roughly the same time as the P450 enzymes themselves, the researchers found that Dap1 does just that in the yeast cell.

To figure out what Dap1 does, Espenshade and colleagues genetically altered yeast cells to lack Dap1. Those cells predictably were unable to make cholesterol and instead contained a build-up of cholesterol precursors.

The research team then tracked Dap1’s counterpart in humans by looking for similar proteins in a computer database and repeated their experiments in human kidney cells engineered to lack the human version of Dap1. As in yeast, the altered human cells accumulated cholesterol precursors and died because cholest erol is essential for cell survival.

To show that Dap1 directly works with P450s and not through some other biochemical steps, Espenshade’s team tested the ability of human Dap1 protein to bind to four of the 57 known human P450 enzymes, essentially challenging Dap1 to bind to P450s that perform totally different functions in different cells as a way to see how far-reaching its control might be.

Dap1 locked on to all four P450s, including one required for clearing half of all known drugs from the body, another involved in making bile and one required for making natural steroid hormones in the adrenal glands.

“Collectively, our experiments suggest that Dap1 acts as a common regulator of cytochrome P450s in mammals,?says Espenshade.

Because Dap1 affects one particular P450 responsible for drug metabolism, Espenshade suspects that genetic variations in the genetic blueprint coding for Dap1 may provide clues to how and why different people react differently to certain drugs.

“Understanding the molecular underpinnings of so-called pharmacogenetic variation will have a big impact on the future of medicine,?he says.
'"/>

Source:Johns Hopkins Medical Institutions


Related biology news :

1. Examination of internal wiring of yeast, worm, and fly reveals conserved circuits
2. Navigating an integrated yeast network
3. After the yeast is gone bacteria continue to develop flavor of sparkling wine
4. GlycoFi announces the first production of antibodies with human glycosylation in yeast
5. From a lowly yeast, researchers divine a clue to human disease
6. GlycoFi and Dartmouth report full humanization of yeast glycosylation pathway in Science
7. Engineered yeast speeds ethanol production
8. Hives ferment a yeasty brew, attract beetle pest
9. Genome-wide mouse study yields link to human leukemia
10. Marine sponge yields nanoscale secrets
11. Small worm yields big clue on muscle receptor action

Post Your Comments:
*Name:
*Comment:
*Email:


(Date:6/3/2016)... 3, 2016 Das ... Nepal hat ein 44 ... geprägter Kennzeichen, einschließlich Personalisierung, Registrierung und IT-Infrastruktur, ... Produktion und Implementierung von Identitätsmanagementlösungen. Zahlreiche renommierte ... Januar teilgenommen, aber Decatur wurde als konformste ...
(Date:5/24/2016)... superior patient care by providing unparalleled technology to leaders of the medical imaging industry. ... recently added to the range of products distributed by Ampronix. Photo - ... ... ... ...
(Date:5/3/2016)... 2016  Neurotechnology, a provider of high-precision biometric ... Biometric Identification System (ABIS) , a complete system ... ABIS can process multiple complex biometric transactions with ... fingerprint, face or iris biometrics. It leverages the ... MegaMatcher Accelerator , which have been used ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... ... 2016 , ... Parallel 6 , the leading software as a service ... Virtual Patient Encounter CONSULT module which enables both audio and video telemedicine communication ... , Using the CONSULT module, patients and physicians can schedule a face to face ...
(Date:6/27/2016)... PHILADELPHIA , June 27, 2016  Liquid ... today announced the funding of a Sponsored Research ... study circulating tumor cells (CTCs) from cancer patients.  ... changes in CTC levels correlate with clinical outcomes ... therapies. These data will then be employed to ...
(Date:6/24/2016)... DIEGO , June 24, 2016 ... more sensitively detects cancers susceptible to PARP inhibitors ... circulating tumor cells (CTCs). The new test has ... HRD-targeted therapeutics in multiple cancer types. ... targeting DNA damage response pathways, including PARP, ATM, ...
(Date:6/23/2016)... ... June 23, 2016 , ... Mosio, a leader in clinical ... Patient Recruitment and Retention Tips.” Partnering with experienced clinical research professionals, Mosio revisits ... tips, tools, and strategies for clinical researchers. , “The landscape of how patients ...
Breaking Biology Technology: