Navigation Links
Possible brain hormone may unlock mystery of hibernation

The discovery of a possible hibernation hormone in the brain may unlock the mystery behind the dormant state, researchers reported in the April 7, 2006 issue of Cell. Hibernation allows animals from bears to rodents to survive unscathed--in a state of suspended animation--under the harshest of winter conditions.

If the findings in chipmunks are confirmed, the hormone would represent the first essential brain signal governing the seasonal adaptation, according to the researchers.

As hibernation factors endow animals with an incredible ability to cope under otherwise lethal conditions--ratcheting down their metabolic rate to survive on limited energy reserves and withstanding extreme cardiovascular and oxygen stresses--the candidate hormone might also pave the way toward clinical therapies that lend humans the same kind of protection, they added.

The researchers earlier found that concentrations of "hibernation-specific protein" complex (HPc) decline in the blood of hibernating chipmunks. The team now reports evidence that the level of HPc in the brain increases at the onset of hibernation independently of changes in body temperature. Moreover, treatments that block HP activity in the animals' brains cuts hibernation short.

"One of the most curious biological phenomena in mammals is their ability to hibernate circannually, which allows them to survive unusually low body temperatures at or near freezing," said study author Takashi Ohtsu of Kanagawa Academy of Science and Technology in Japan. Scientists have attempted for decades to identify substances responsible for hibernation in the blood and organs of hibernating animals but have met with little success, the researchers said.

"Although the functions of HP remain to be clarified, the current observations lead us to propose the involvement of the protein complex in the regulation of energy metabolism and/or biological defenses during hibernation--crucial events for adapting to t he severe physiological state," Ohtsu said.

In the current study, the researchers first demonstrated that hibernation in chipmunks is strictly controlled by an individual's internal circannual rhythm even under conditions of constant cold. In 20 hibernators examined throughout their lives, concentrations of HPc in the blood started to decrease prior to hibernation and remained low throughout the inactive state. Hibernation ended after blood HPc levels rose.

Further study revealed an inverse relationship between HPc levels in the blood and brain. While HPc levels dipped in blood, the putative hormone rose dramatically in cerebral spinal fluid, they reported. Likewise, HPc levels decreased abruptly in spinal fluid when hibernation terminated.

The researchers also found that blocking the activity of one of the HP complex proteins in the brain with antibody greatly decreased the hibernation time during which the chipmunks maintained a lowered body temperature, suggesting its critical role in the brain's capacity for dormancy.

The researchers propose that HPc in the blood is actively transported into the spinal fluid in response to the animals' natural rhythm. The hibernation complex might also play a role in the seasonal behavior changes of animal species that do not hibernate, the researchers suggested.

For example, the complex could moderate physiological events such as reproduction in seasonally breeding mammals and migration in birds, they said. Even humans can maintain seasonal rhythms as exhibited by seasonal affective disorder, a recurrent depression characterized by increased sleep, overeating, and weight gain--behaviors similar to those seen in hibernators, Ohtsu noted.

"Hibernation is an extreme response to a seasonal environment, yet we knew almost nothing about how it is timed, nor how vital cellular functions are sustained in the face of plummeting body temperature," wrote Michael Hastings in a preview. The re searchers now "identify a liver-derived protein complex as an essential coordinator of this adaptation to the depredations of winter."

"The finding has more than passing biological interest because understanding how tissues cope with the cardiovascular and oxidative stresses associated with hibernation or torpor may have direct clinical relevance," he added.

For example, he wrote, such a protective program might be exploited in transplant and vascular surgery. Scientists have suggested that hibernation therapy might effectively preserve donor organs for weeks or months.

Hibernation has also been found to protect animals from a wide range of potential threats, from muscle disuse to cancer, the study authors said. Therefore, hibernation therapy might confer protective effects in other clinical arenas as well.

The new findings could lead to "potential pharmacological applications in humans to the prevention of lethal diseases, such as hypothermia, ischemia, muscle atrophy, bacterial infection, and tumorigenesis, which has been observed during hibernation in hibernators," the researchers said.

"These studies may further stimulate the exploration of new techniques for cryosurgery of the heart and brain, as well as the development of hypothermia treatment that is effective for preventing brain ischemic damage." In cryosurgery, physicians use extreme cold to destroy abnormal tissue, such as cancerous tumors.


'"/>

Source:Cell Press


Related biology news :

1. Stem Cells Found In Cerebellum; Possible Cell of Origin for Childhood Brain Tumors
2. Possible treatment found for chemobrain
3. Is it Possible to Change Prescribing Habits?
4. Possible birthplace of malignant brain tumors identified
5. Controversial drug shown to act on brain protein to cut alcohol use
6. Mouse brain cells rapidly recover after Alzheimers plaques are cleared
7. Mouse brain tumors mimic those in human genetic disorder
8. New imaging method gives early indication if brain cancer therapy is effective, U-M study shows
9. First atlas of key brain genes could speed research on cancer, neurological diseases
10. NYU study reveals how brains immune system fights viral encephalitis
11. Stem cells from brain transformed to produce insulin at Stanford
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:3/21/2016)... 2016 Unique technology combines ... superior security   Xura, Inc. ... secure digital communications services, today announced it is working ... enterprise customers, particularly those in the Financial Services Sector, ... authentication within a mobile app, alongside, and in combination ...
(Date:3/17/2016)... 17, 2016 ABI Research, the leader ... global biometrics market will reach more than $30 ... from 2015. Consumer electronics, particularly smartphones, continue to ... anticipated to reach two billion shipments by 2021 ... Pavlakis , Research Analyst at ABI Research. "Surveillance ...
(Date:3/15/2016)... , March 15, 2016 Yissum Research ... the technology-transfer company of the Hebrew University, announced today ... remote sensing technology of various human biological indicators. Neteera ... $2.0 million from private investors. ... on the detection of electromagnetic emissions from sweat ducts, ...
Breaking Biology News(10 mins):
(Date:5/2/2016)... ... May 02, 2016 , ... ... the pre-launch success of their revolutionary, veterinarian-designed product for indoor cats. The NoBowl ... and play with their food the way nature intended. NoBowls make cats happy ...
(Date:4/29/2016)... April 29, 2016 According ... Market Research "Separation Systems for Commercial Biotechnology Market ... and Forecast 2015 - 2023", the separation systems ... 10,665.5 Mn in 2014 and is projected to ... to 2023 to reach US$ 19,227.8 Mn in ...
(Date:4/29/2016)... TURIN, Italy , April 29, 2016 ... version 5.11, the latest update to its industry-leading treatment ... has shown that Monaco version ... Users can now attain calculation speeds up to four ... Monaco . With the industry,s gold standard ...
(Date:4/28/2016)... (PRWEB) , ... April 28, 2016 , ... ... Asymmetrex will deliver a talk on its first-in-class technologies for tissue stem ... 2016 Meeting on RNAiMicroRNA Biology to Reprogramming & CRISPR-based Genome Engineering in ...
Breaking Biology Technology: