Navigation Links
Plants respond similarly to signals from friends, enemies

Two soil-dwelling strangers ?a friend and a foe ?approach a plant and communicate with it in order to enter a partnership. The friend wants to trade nitrogen for food. The foe is a parasite that wants to burrow in and harm the plant.

In a new finding published in Proceedings of the National Academy of Sciences, researchers at North Carolina State University have found that the two strangers communicate with the plant in very similar ways. The plant's responses to both friend and foe are also remarkably similar.

Using high-tech microscopy and florescent imaging techniques that allow for real-time, three-dimensional study in living cells over time, the NC State researchers discovered that the model legume Lotus japonicus responded similarly to signals from both rhizobia, the friends that fix nitrogen for the plant, and root-knot nematodes, the parasitic foes that want to harm the plant. Signals from both outsiders induce rapid changes in distribution of the plant's cytoskeleton, which is part of a pathway that leads to a series of growth changes that include the formation of either nodules housing bacteria or giant cells from which the nematodes feed.

The scientists also discovered that, like rhizobia and contrary to popular belief, the root-knot nematode signals plants from a distance and therefore does not need to attach itself to the plant to elicit a response.

When the researchers studied L. japonicus plants missing the receptors that receive signals from other organisms ?certain genes in the plant were modified to accomplish this ?they discovered that the plants failed to respond to signals from both friend and foe, and therefore no changes were viewed in the plant's cytoskeleton.

"This exquisite system that plants have developed to allow beneficial interactions with other organisms like rhizobia is being exploited by nematodes," says Dr. David Bird, associate professor of plant pathology, co-director of NC State's Center fo r the Biology of Nematode Parasitism and co-author of the paper. "Nematodes have not only found a weak link in plants but may be using the very same bacterial machinery against it."

The study started as a graduate research project of Ravisha R. Weerasinghe, the lead author of the paper, in the lab of Dr. Nina Allen, professor of botany and co-author of the paper. Weerasinghe first observed the changes in the plants triggered by signals from rhizobia, called Nod factors, and then saw the similar changes occurring when plants were signaled by root-knot nematodes. In the paper, the researchers call the nematodes' signals "Nematode factors."

After rhizobia perceive plant signals and send back Nod factors, the plant's root hairs curl around the good bacteria. The rhizobia then migrate into the root and form special structures called nodules, where they turn atmospheric nitrogen into usable nitrogen for the plant and, in return, take some of the plant's energy to survive. A similar relationship appeared when Weerasinghe studied the signals between plants and nematodes, even though the nematode provides no benefit to its host. Root-knot nematodes form feeding cells ?so-called giant cells ?in the plant and later galls or knots on it.

"We don't know the precise structure of Nematode factor, but it appears that the nematodes may have actually acquired genes from rhizobia to exploit this signal pathway," Bird says.

###

The research was funded by the National Science Foundation and the North Carolina Research Station.

"Root-knot Nematodes and Bacterial Nod Factors Elicit Common Signal Transduction Events in Lotus japonicus" Authors: Ravisha R. Weerasinghe David McK. Bird and Nina S. Allen, North Carolina State University Date: Published online the week of Feb. 14 in Proceedings of the National Academy of Sciences


'"/>

Source:North Carolina State University


Related biology news :

1. Quantum Dots Research Leads to New Knowledge about Protein Binding in Plants
2. Plants, animals share molecular growth mechanisms
3. Plants defy Mendels inheritance laws, may prompt textbook changes
4. Study: Plants use dual defense system to fight pathogens
5. Plants discriminate between self and non self
6. Prozac for future Plants on Mars
7. Plants reveal a secret and bring researchers nearer a cleaner future
8. Plants have a double line of defence
9. Plants, too, have ways to manage freeloaders
10. Plants give pests sock in the gut
11. Plants used to detect gas leaks, from outer space!
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:12/15/2016)... 2016 "Increase in mobile transactions is driving ... biometrics market is expected to grow from USD 4.03 ... at a CAGR of 29.3% between 2016 and 2022. ... growing demand for smart devices, government initiatives, and increasing ... component is expected to grow at a high rate ...
(Date:12/7/2016)... BioCatch , the global leader in behavioral biometrics, reported a ... over 40 granted and pending patents. ... , The Company,s IP portfolio expansion ... Device, and Method Estimating Force Applied to a Touch Surface, " ... components needed to estimate the force and pressure applied to touch surfaces ...
(Date:12/6/2016)... Dec. 6, 2016 Securus Technologies, a ... solutions for public safety, investigation, corrections and monitoring, ... today a five (5) year funding commitment by ... expand the rehabilitation and reentry support to more ... Established in 2004, the Prison Entrepreneurship Program (PEP) ...
Breaking Biology News(10 mins):
(Date:1/17/2017)... , ... January 17, 2017 , ... ... re-engineered Drug Safety Technology Consortium™ (SafeTEC™), $3 million in investment towards 15+ TEC ... new tools and assays, and their applicability in drug safety assessment, for the ...
(Date:1/17/2017)... , ... January 17, 2017 , ... ... and epigenetics research, recently announced a collaboration with the Heidelberg University Hospital and ... method for library preparation, following the company’s successful launch of its CATS ...
(Date:1/17/2017)... -- On January 10 at the Medtech Showcase held in ... in San Francisco , ProclaRx CEO, ... pharmaceutical leaders and public and private investors about the ... destroy biofilms.  Biofilms are a physical ... body,s immune system from eradicating chronic infections. Infections with biofilms ...
(Date:1/16/2017)... MANHASSET, N.Y. , Jan. 16, 2017   ... Kevin J. Tracey, MD , president and CEO of ... Northwell Health, completed an analysis of how the nervous ... further identify and develop bioelectronic medicine devices ... today in Nature Neuroscience . The ...
Breaking Biology Technology: