Navigation Links
Pigeons provide clue to solving common problem in heart patients

Through studying pigeons with genetic heart disease, researchers at Wake Forest University School of Medicine have discovered a clue about why some patients' heart vessels are prone to close back up after angioplasty.

"We identified a regulator of genes that controls the growth of artery smooth muscle cells," said William Wagner, Ph.D., senior researcher. "Learning to modulate the uncontrolled growth of these cells could potentially solve the problem of vessels re-closing after angioplasty."

The work is reported in the August issue of Experimental and Molecular Pathology.

Angioplasty uses a balloon-like device to crush the material blocking an artery. But, within three to six months, even if a stent is placed in the artery to keep it open, the vessel becomes re-blocked in about 25 percent to 30 percent of patients. This process, known as restenosis, has been described as "over exuberant" tissue healing and involves the smooth muscle cells. It is not known why this happens in some people and not in others, but many scientists believe that genes are to blame, Wagner said.

The researchers sought to find the answer in two breeds of pigeons ?one that is genetically susceptible to heart attacks and heart vessel disease (white carneau) and one (show racer) that is resistant. A major difference between the two breeds is that smooth muscle cells from the heart vessels of white carneau pigeons are prone to uncontrolled growth.

"Understanding the factors that play a role in this increased cell growth may provide an opportunity to target its role in both the initial development of artery blockages and in the restenosis following angioplasty," said Wagner, a professor of pathology and fellow of the American Heart Association.

Genes "express," or produce, proteins that are used in building tissue. The process begins with "transcription," or the copying of a gene's DNA sequence.

It is not known which genes might contro l the pigeons' heart vessel tissue-building process, so Wagner's group focused on "transcription factors," which regulate whether a gene is expressed and at what rate. The group's aim was to see if certain transcription factors might be found in altered amounts in the smooth muscle cells of pigeons that are prone to atherosclerosis.

They screened 54 different transcription factors and found that one, known as STAT4, was 10 times higher in the white carneau pigeons with genetic heart disease. Further testing showed that stimulating STAT4 in smooth muscle cells in the laboratory resulted in a threefold increase in cell growth.

"We were very surprised," said Wagner. "This is one of the first reports of this factor being found in smooth muscle cells."

Wagner said the finding has potential for helping scientists solve the problem of restenosis.

"Interfering with these factors and the signaling pathways involving STAT4 may be potentially important in atherosclerosis therapy," he said. "We may identify ways to reduce or block its effect and slow or stop the unwanted growth of cells."

He said that by finding the transcription factor, researchers can concentrate on modifying its pathway, and won't need to know which or how many genes it affects.


'"/>

Source:Wake Forest University Baptist Medical Center


Related biology news :

1. Experiments provide proof of how traveling in groups protects insects
2. Experiments provide proof of how traveling in groups protects insects
3. ASU researchers finds novel chemistry at work to provide parrots vibrant red colors
4. MetaChip provides quick, efficient toxicity screening of potential drugs
5. Alaskan puzzles, monitoring provide insight about North Pacific salmon runs
6. NYU and MSKCC research provides model for understanding chemically induced cancer initiation
7. Nature provides inspiration for important new adhesive
8. Hydrogen and methane provide raw energy for life at Lost City
9. Research may provide new link between soft drinks and weight gain
10. Hopkins AIDS experts issue warning about global efforts to provide drug therapies
11. High-powered gene profiles provide clues to genes involved in common form of lung cancer
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:4/17/2017)... NXT-ID, Inc. (NASDAQ: NXTD ) ("NXT-ID" or the ... Annual Report on Form 10-K on Thursday April 13, 2017 with ... ... Relations section of the Company,s website at http://www.nxt-id.com  under "SEC ... . 2016 Year Highlights: Acquisition ...
(Date:4/13/2017)... According to a new market research report "Consumer IAM Market by Solution ... Authentication Type, Deployment Mode, Vertical, and Region - Global Forecast to 2022", ... 14.30 Billion in 2017 to USD 31.75 Billion by 2022, at a ... ... MarketsandMarkets Logo ...
(Date:4/11/2017)... , Apr. 11, 2017 Research and Markets ... 2017-2021" report to their offering. ... The global eye tracking market to grow at a CAGR ... Global Eye Tracking Market 2017-2021, has been prepared based on an ... the market landscape and its growth prospects over the coming years. ...
Breaking Biology News(10 mins):
(Date:8/15/2017)... ... August 15, 2017 , ... Nanomedical Diagnostics , a ... announces the launch of the new NHS Agile biosensor chip . The ... for a wide range of molecules, including small and large molecules, peptides, proteins, ...
(Date:8/15/2017)... ... August 15, 2017 , ... The Conference Forum and ... programming through a series of upcoming panels and events. The partnership culminates with the ... Roosevelt Hotel in New York City. , “With our experience in producing the Immuno-Oncology ...
(Date:8/14/2017)... Portland, Oregon (PRWEB) , ... August 14, 2017 ... ... modules that provide essential device-to-computer interconnect using USB or PCI Express, announced the ... hardware. , SYZYGY is intended to satisfy the need for a compact, low ...
(Date:8/11/2017)... Glendale, Calif. (PRWEB) , ... August 11, 2017 , ... ... a plant collagen-based formulation unlocking collagen like never before. , Collagen is the ... many firsts to market with Liquid Collagen™, which include: , ...
Breaking Biology Technology: