Navigation Links
Physical and functional interaction of key cell growth molecules linked to cancer

Scientists have uncovered new information about a specific mechanism involved in the biology of malignant human tumor cells. The findings, published in the June issue of Cancer Cell, significantly advance knowledge about epidermal growth factor receptor (EGFR).

EGFR is a well-studied cell surface receptor that stimulates cell growth by transmitting growth factor signals acting outside the cell. EGFR is often present at abnormally elevated levels in human cancer cells. Increased EGFR activity has been linked to metastasis and treatment resistance for aggressive human tumors and, as a result, the EGFR has been identified as an attractive target for cancer therapeutics. However, the precise role of EGFR in cancer cell biology has remained elusive.

Recent studies have shown that in response to growth factor stimulation, a fraction of EGFR molecules move from the cell membrane into the nucleus, where the genetic material of the cell is located. These research studies suggest that EGFR itself probably does not directly regulate gene expression, but may interact with other as yet unidentified molecules in the nucleus. A better understanding of the role of the EGFR signaling pathway in the progression of cancer will be useful for development of new anticancer therapeutics.

In the current study, Dr. Mien-Chie Hung and colleagues from the Department of Molecular and Cellular Oncology at the University of Texas M.D. Anderson Cancer Center found that EGFR interacts with STAT3 in the cell nucleus. STAT3 is a molecule that is known to bind to DNA and directly regulate gene expression. STAT3 has also been shown to have a major role in oncogenesis. Importantly, interaction with STAT3 provides a mechanism for EGFR-driven regulation of gene transcription. The researchers also discovered that the EGFR/STAT3 interaction leads increased expression of inducible nitric oxide synthase (iNOS). Although elevated iNOS is also a key characteristic of many human malignanc ies, there has previously been no direct connection made between EGFR and the iNOS/NO pathway.

The researchers conclude that the complex formed by EGFR and STAT3 can directly regulate gene expression and provides a new transcriptional mechanism that may play a significant role in human cancers, transducing cell signals from outside the cell into the nucleus. According to Dr. Hung, "As in OS serves as a direct target of the identified EGFR/STAT3 transcriptional complex, the deregulated iNOS/NO pathway may, in part, contribute to the malignant biology of tumor cells with high levels of nuclear EGFR and STAT3." This research may open new avenues for designing anticancer therapies against EGFR, STAT3, and iNOS/NO.


'"/>

Source:Cell Press


Related biology news :

1. Towards precise classification of cancers based on robust gene functional expression profiles
2. Bone marrow cells can become functional gut lining cells
3. Virus-host interactions at sea effect global photosynthesis
4. Future diabetes drugs may target new protein interaction
5. Computational verification of protein-protein interactions by orthologous co-expression
6. Confirmation of human protein interaction data by human expression data
7. Complex gene interactions account for autism risk
8. Image of myosin-actin interaction revealed in cover story of Molecular Cell
9. A real time look at interactions between RNA and proteins
10. U of MN researchers develop way to visualize synchronized interactions of nerve cells in the brain
11. Biologists visualize protein interaction that may initiate viral infection
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:11/30/2016)... , Nov. 30, 2016  higi SH llc ... partnership initiative targeting national brands, industry thought-leaders and ... their respective audiences for taking steps to live ... inception in 2012, higi has built the largest ... over 38 million people who have conducted over ...
(Date:11/24/2016)... , Nov. 23, 2016 Cercacor today ... athletes and their trainers non-invasively measure hemoglobin, ... Pulse Rate, and Respiration Rate in approximately 30 seconds. ... users easy and immediate access to key data about ... of a training regimen. Hemoglobin carries ...
(Date:11/17/2016)... Nov. 17, 2016 Global Market Watch: ... (Disease-Based Banks, Population-Based Banks and Academics) market is to witness ... Private Biobanks shows the highest Compounded Annual Growth Rate (CAGR) ... region during the analysis period 2014-2020. North America ... 9.95% followed by Europe at 9.56% ...
Breaking Biology News(10 mins):
(Date:12/8/2016)... 2016 AskLinkerReports.com has published a report ... Amyloglucosidase Industry 2016 Market Research Report. From a basic outline ... overview are all covered in the report. This report projects ... analysis of the Amyloglucosidase industry. ... , , ...
(Date:12/8/2016)... Dec. 8, 2016  Renova™ Therapeutics, a biotechnology ... failure and type 2 diabetes, announced that it ... adeno-associated virus (AAV) vector developed in the laboratory ... at Stanford University. The company plans to use ... therapy product pipeline. "Early research ...
(Date:12/8/2016)... ... December 08, 2016 , ... The ability ... optogenetics — is key to exciting advances in the study and mapping of ... projected via free-space optics stimulates small, transparent organisms and excites neurons within superficial ...
(Date:12/8/2016)... England , December 8, 2016 ... das Unternehmen für Molekulargenetik, erweitert seine Palette an ... myPanel™ NGS Custom FH Panels, das ein schnelles ... (FH) ermöglicht. Das Panel bietet eine Erkennung von ... Variations (CNV) mit einem einzigen kleinen Panel und ...
Breaking Biology Technology: