Navigation Links
Penn study on olfactory nerve cells shows why we smell better when we sniff

Unlike most of our sensory systems that detect only one type of stimuli, our sense of smell works double duty, detecting both chemical and mechanical stimuli to improve how we smell, according to University of Pennsylvania School of Medicine researchers in the March issue of Nature Neuroscience.

This finding, plus the fact that both types of stimuli produce reaction in olfactory nerve cells, which control how our brain perceives what we smell, explains why we sniff to smell something, and why our sense of smell is synchronized with inhaling.

"The driving force for such synchronization remained a mystery for more than 50 years," says senior author Minghong Ma, PhD, Assistant Professor of Neuroscience. "These results help us understand how the mammalian olfactory system encodes and decodes odor information in the environment."

Researchers tested two different types of stimulation on olfactory neurons in mice: chemical stimuli, such as those used in making perfumes that have almond-like and banana-like scents, and mechanical stimuli, that is pressure carried by air flow to the nostrils while breathing.

The group did this first by puffing a chemical stimulus into the nose. As expected, this produced a reaction in the olfactory neurons, the primary sensory neurons in the nose that perceive odors. Researchers then puffed a solution without the chemical stimuli into the mouse's nose. This also produced a similar, but smaller reaction in the olfactory neurons. By decreasing pressure of the non-odor solution, they also found that the reaction in the olfactory neurons was less, confirming that it was sensitive to mechanical stimulation.

When olfactory neurons respond to odor molecules, they transmit chemical energy into electrical signals, which then trigger a secondary molecular messenger cascade that generates electrical impulses to the brain, signaling that it is smelling something. The group discovered that chemical and me chanical stimuli both resulted in the same messenger molecule, cAMP, which acts like a gatekeeper of reactions in the olfactory neurons.

Although this study was conducted on a mouse model, the researchers tested two different parts of the nose, one that humans have and one that humans do not. The first, the septal organ, is a patch of smell-sensitive tissue on the septal wall of the nasal cavity. The second, the main olfactory epithelium, is a smell-sensitive tissue inside the nasal cavity.

Synchronized Breathing

The septal organ is only about 1 percent the size of the main olfactory epithelium and isn't shared by all mammals. Mice, for example, have a septal organ. Humans do not. But in this study, Ma's group found that 50 percent of the cells in the main olfactory epithelium are sensitive to physical stimuli, suggesting that mechanosensitivity of the olfactory sensory neurons exists in all mammals, even those like humans, without the septal organ.

The mechanosensitivity of our olfactory neurons has two possible functions, suggest the investigators. The first is that it increases our ability to smell, enhancing the detection of odorous molecules in the air. The second is a peripheral drive in the brain to synchronize rhythmic activity, which is the concurrent firing of neurons in the olfactory bulb with breathing.

"The mechanosensitivity may increase the sensitivity of our nose, especially when stimulated by weak odors," says Ma. "It helps the brain make better sense out of odor responses when it integrates airflow information. We still don't know how it happens, but sniffing is essential for odor perception."


'"/>

Source:University of Pennsylvania School of Medicine


Related biology news :

1. Bioartificial kidney under study at MCG
2. W.M. Keck Foundation funds study of friendly microbes
3. Yellowstone microbes fueled by hydrogen, according to U. of Colorado study
4. Genome-wide mouse study yields link to human leukemia
5. Clam embryo study shows pollutant mixture adversely affects nerve cell development
6. New imaging method gives early indication if brain cancer therapy is effective, U-M study shows
7. Same mutation aided evolution in many fish species, Stanford study finds
8. Sequencing of marine bacterium will help study of cell communication
9. Genetically modified rice in China benefits farmers health, study finds
10. A new study examines how shared pathogens affect host populations
11. NYU study reveals how brains immune system fights viral encephalitis
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:4/5/2017)... 2017 KEY FINDINGS The global ... a CAGR of 25.76% during the forecast period of ... factor for the growth of the stem cell market. ... MARKET INSIGHTS The global stem cell market is ... geography. The stem cell market of the product is ...
(Date:3/30/2017)... , March 30, 2017 The research ... system for three-dimensional (3D) fingerprint identification by adopting ground breaking 3D ... a new realm of speed and accuracy for use in identification, ... an affordable cost. ... ...
(Date:3/27/2017)... 2017  Catholic Health Services (CHS) has been ... (HIMSS) Analytics for achieving Stage 6 on the ... In addition, CHS previously earned a place in ... electronic medical record (EMR). "HIMSS Analytics ... EMR usage in an outpatient setting.  This recognition ...
Breaking Biology News(10 mins):
(Date:10/11/2017)... ... October 11, 2017 , ... ... its endogenous context, enabling overexpression experiments and avoiding the use of exogenous expression ... guides is transformative for performing systematic gain-of-function studies. , This complement to ...
(Date:10/11/2017)... and LAGUNA HILLS, Calif. , Oct. ... Cancer Research, London (ICR) and University ... SKY92, SkylineDx,s prognostic tool to risk-stratify patients with multiple myeloma ... MUK nine . The University of Leeds ... partly funded by Myeloma UK, and ICR will perform the ...
(Date:10/10/2017)... ... October 10, 2017 , ... ... company advancing targeted antibody-drug conjugate (ADC) therapeutics, today confirmed licensing rights that ... Polymerized Liposomal Nanoparticle), a technology developed in collaboration with Children’s Hospital Los ...
(Date:10/10/2017)... (PRWEB) , ... October 10, 2017 , ... ... innovation and business process optimization firm for the life sciences and healthcare industries, ... conference in San Francisco. , The presentation, “Automating GxP Validation for Agile ...
Breaking Biology Technology: