Navigation Links
Penn study finds direct role for glial cells in brain cross-talk

Findings may help elucidate mechanisms of wake-sleep transitions and epileptic seizures

Researchers at the University of Pennsylvania School of Medicine have demonstrated that star-shaped glial cells in the brain called astrocytes are directly involved in regulating communication between neurons. A central finding of the study is that astrocytes modulate the level of a signaling molecule called adenosine, which is thought to be important in controlling wake-to-sleep transitions and epileptic seizures.

"This finding may cause neuroscientists to radically alter their view of the role of astrocytes as merely supportive to one of actively communicating with and instructing neurons," states senior author Philip G. Haydon, PhD, Professor of Neuroscience. "Astrocytes are not just the 'kitchen cells' of the brain, providing nutritional support, but instead also help the neurons talk to each other." Haydon and colleagues published their results in last week's issue of Science.

The central nervous system, which includes the brain and spinal cord, is composed of specialized cells called neurons that send out and receive chemical signals called neurotransmitters across a space called the synapse. This process results in transmission of a nerve impulse. Historically, the glial cell or astrocyte was considered to be a support cell and to play no active role in regulating nerve impulse transmission. However, recent research by Haydon and other investigators has indicated that glial cells do produce chemical transmitters called gliotransmitters and that these chemical signals are recognized by the neurons. The studies that have shown capability were conducted on isolated nerve cells or on slices of brain tissue.

In this most recent study, the researchers made genetic manipulations to glial cells in live mice, thus directly demonstrating how astrocytes function in the brain. The mice were engineered to produce a protein called SNARE in their astrocyt es. When the SNARE protein was produced, the amount of adenosine decreased.

When adenosine accumulated, nerve impulses were suppressed and could not be transmitted across the synapse. This helps explain why high adenosine levels can suppress epileptic seizures.

In contrast, low levels of adenosine increased the transmission of nerve impulses. The modulation of neuronal activity through the regulation of the level of adenosine in the synapse may explain the nature of wake-to-sleep transitions during periods of drowsiness.

"The next step is to study the behavior of these mice during manipulation of adenosine levels in the brain," says Haydon.

The study was a collaboration between Haydon and Stephen Moss at Penn and Ken McCarthy, University of North Carolina, Chapel Hill. The lead author was Olivier Pascual, a post-doctoral fellow in Penn's Department of Neuroscience. Co-authors are Kristi Casper, Cathryn Kubera, Jing Zhang, Raquel Revilla-Sanchez, Jai-Yoon Sul and HajimeTakano.

This study was funded by the National Institute of Neurological Disorders and Stroke and the National Institute of Mental Health.This release and related images can also be found at: www.uphs.upenn.edu/news


'"/>

Source:University of Pennsylvania School of Medicine


Related biology news :

1. Bioartificial kidney under study at MCG
2. W.M. Keck Foundation funds study of friendly microbes
3. Yellowstone microbes fueled by hydrogen, according to U. of Colorado study
4. Genome-wide mouse study yields link to human leukemia
5. Clam embryo study shows pollutant mixture adversely affects nerve cell development
6. New imaging method gives early indication if brain cancer therapy is effective, U-M study shows
7. Same mutation aided evolution in many fish species, Stanford study finds
8. Sequencing of marine bacterium will help study of cell communication
9. Genetically modified rice in China benefits farmers health, study finds
10. A new study examines how shared pathogens affect host populations
11. NYU study reveals how brains immune system fights viral encephalitis
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:11/15/2016)... , Nov. 15, 2016  Synthetic Biologics, Inc. ... therapeutics focused on the gut microbiome, today announced ... 25,000,000 shares of its common stock and warrants ... at a price to the public of $1.00 ... Synthetic Biologics from the offering, excluding the proceeds, ...
(Date:6/22/2016)... June 22, 2016  The American College of Medical Genetics ... Executive Magazine as one of the fastest-growing trade shows ... at the Bellagio in Las Vegas . ... percentage of growth in each of the following categories: net ... and number of attendees. The 2015 ACMG Annual Meeting was ...
(Date:6/16/2016)... June 16, 2016 The ... expected to reach USD 1.83 billion by 2024, ... Research, Inc. Technological proliferation and increasing demand in ... expected to drive the market growth. ... The development of advanced multimodal techniques for ...
Breaking Biology News(10 mins):
(Date:12/6/2016)... 6, 2016 According to a new market ... (Polymer, Glass, Silicon), Application (Genomics, Proteomics, Capillary Electrophoresis, POC, Clinical, Environmental, ... global market is projected to reach USD 8.78 Billion by 2021 ... during the forecast period (2016 to 2021). ... ...
(Date:12/6/2016)... , Dec. 6, 2016  SRI International has ... million from the National Institutes of Health,s National ... Division of AIDS (NIAID-DAIDS) to support the manufacturing ... pre-exposure (PreP) agents. Under the seven-year contract, SRI ... development services for candidate HIV-prevention products that emerge ...
(Date:12/6/2016)... ... 2016 , ... RoviSys, a leading independent provider of comprehensive ... the opening of their new office building today. Located at 480 Green Oaks ... 200 employees focused on providing sales, engineering, and support services to customers in ...
(Date:12/5/2016)... Dec 5, 2016 Research and Markets ... - Technologies, Markets and Companies" to their offering. ... , , ... discovery using various -omics technologies such as proteomics and metabolomics. Molecular ... tests are also based on biomarker. Currently the most ...
Breaking Biology Technology: