Navigation Links
Penn study finds direct role for glial cells in brain cross-talk

Findings may help elucidate mechanisms of wake-sleep transitions and epileptic seizures

Researchers at the University of Pennsylvania School of Medicine have demonstrated that star-shaped glial cells in the brain called astrocytes are directly involved in regulating communication between neurons. A central finding of the study is that astrocytes modulate the level of a signaling molecule called adenosine, which is thought to be important in controlling wake-to-sleep transitions and epileptic seizures.

"This finding may cause neuroscientists to radically alter their view of the role of astrocytes as merely supportive to one of actively communicating with and instructing neurons," states senior author Philip G. Haydon, PhD, Professor of Neuroscience. "Astrocytes are not just the 'kitchen cells' of the brain, providing nutritional support, but instead also help the neurons talk to each other." Haydon and colleagues published their results in last week's issue of Science.

The central nervous system, which includes the brain and spinal cord, is composed of specialized cells called neurons that send out and receive chemical signals called neurotransmitters across a space called the synapse. This process results in transmission of a nerve impulse. Historically, the glial cell or astrocyte was considered to be a support cell and to play no active role in regulating nerve impulse transmission. However, recent research by Haydon and other investigators has indicated that glial cells do produce chemical transmitters called gliotransmitters and that these chemical signals are recognized by the neurons. The studies that have shown capability were conducted on isolated nerve cells or on slices of brain tissue.

In this most recent study, the researchers made genetic manipulations to glial cells in live mice, thus directly demonstrating how astrocytes function in the brain. The mice were engineered to produce a protein called SNARE in their astrocyt es. When the SNARE protein was produced, the amount of adenosine decreased.

When adenosine accumulated, nerve impulses were suppressed and could not be transmitted across the synapse. This helps explain why high adenosine levels can suppress epileptic seizures.

In contrast, low levels of adenosine increased the transmission of nerve impulses. The modulation of neuronal activity through the regulation of the level of adenosine in the synapse may explain the nature of wake-to-sleep transitions during periods of drowsiness.

"The next step is to study the behavior of these mice during manipulation of adenosine levels in the brain," says Haydon.

The study was a collaboration between Haydon and Stephen Moss at Penn and Ken McCarthy, University of North Carolina, Chapel Hill. The lead author was Olivier Pascual, a post-doctoral fellow in Penn's Department of Neuroscience. Co-authors are Kristi Casper, Cathryn Kubera, Jing Zhang, Raquel Revilla-Sanchez, Jai-Yoon Sul and HajimeTakano.

This study was funded by the National Institute of Neurological Disorders and Stroke and the National Institute of Mental Health.This release and related images can also be found at: www.uphs.upenn.edu/news


'"/>

Source:University of Pennsylvania School of Medicine


Related biology news :

1. Bioartificial kidney under study at MCG
2. W.M. Keck Foundation funds study of friendly microbes
3. Yellowstone microbes fueled by hydrogen, according to U. of Colorado study
4. Genome-wide mouse study yields link to human leukemia
5. Clam embryo study shows pollutant mixture adversely affects nerve cell development
6. New imaging method gives early indication if brain cancer therapy is effective, U-M study shows
7. Same mutation aided evolution in many fish species, Stanford study finds
8. Sequencing of marine bacterium will help study of cell communication
9. Genetically modified rice in China benefits farmers health, study finds
10. A new study examines how shared pathogens affect host populations
11. NYU study reveals how brains immune system fights viral encephalitis
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:3/30/2017)... , March 30, 2017 The research team ... for three-dimensional (3D) fingerprint identification by adopting ground breaking 3D fingerprint ... new realm of speed and accuracy for use in identification, crime ... affordable cost. ... A ...
(Date:3/28/2017)... -- The report "Video Surveillance Market by ... Devices), Software (Video Analytics, VMS), and Service (VSaaS, Installation ... 2022", published by MarketsandMarkets, the market was valued at ... reach USD 75.64 Billion by 2022, at a CAGR ... considered for the study is 2016 and the forecast ...
(Date:3/24/2017)... Mar 24, 2017 Research and Markets has ... Market Analysis & Trends - Industry Forecast to 2025" report ... ... at a CAGR of around 15.1% over the next decade to ... report analyzes the market estimates and forecasts for all the given ...
Breaking Biology News(10 mins):
(Date:7/24/2017)... ... , ... Charm Sciences, Inc. is pleased to announce the Charm® ROSA® Tetracycline-SL ... Shipments (NCIMS) Laboratory Committee and Appendix N Committee as a drug residue test kit ... NCIMS voted at its annual meeting in April, 2015 to establish a pilot program ...
(Date:7/24/2017)... , July 24, 2017 Intralytix, Inc. announced ... from Lesaffre, a French family group. This investment marks ... to develop and commercialize bacteriophage-based products, for various benefits ... interest. As ... designs manufactures and markets innovative solutions for baking, food ...
(Date:7/24/2017)... ... July 24, 2017 , ... Each year, Inavero’s Best ... proven their superior service quality as rated by hiring professionals and job candidates. ... based on service quality ratings from their placed talent. , Fewer than 2% ...
(Date:7/24/2017)... ... July 24, 2017 , ... ... market news outlet had initiated coverage on Interpace Diagnostics. Interpace Diagnostics is ... exposure, progression and risk analysis from specific cancers in humans. , According ...
Breaking Biology Technology: