Navigation Links
Penn researchers show how nanocylinders deliver medicine better than nanospheres

Researchers at the University of Pennsylvania School of Medicine & School of Engineering and Applied Science have discovered a better way to deliver drugs to tumors. By using a cylindrical-shaped carrier they were able sustain delivery of the anticancer drug paclitaxel to an animal model of lung cancer ten times longer than that delivered on spherical-shaped carriers. These findings have implications for drug delivery as well as for better understanding cylinder-shaped viruses like Ebola and H5N1 influenza.

This study appeared online in Nature Nanotechnology in advance of print publication in March 2007.

"These are particles that go with the flow," says Dennis E. Discher, PhD, Professor of Chemical and Biomolecular Engineering at Penn’s Institute for Medicine and Engineering. "The blood stream is constantly pumping, and these cylindrical nanoparticles align with the flow and persist in circulation considerably longer than any known spherical particles."

In this study, the research team used skinny cylindrical nanoparticles composed of synthetic polymers to deliver the anticancer drug paclitaxel to a human lung tumor tissue implanted in mice. The cylinders have diameters as small as 20 nm and lengths approaching the size of blood cells. The paclitaxel shrunk the tumors and, because the cylinders remained in circulation for up to one week after injection, they delivered a more effective dose, killing more cancer cells and shrinking the tumors to a much greater extent. Spherical nanoparticles typically only stay in circulation for a few hours.

The research team used nanoparticles that contained one water-loving chain of a common polymer called polyethyleneglycol (PEG). PEGs are commonly found in everyday items like shampoo and some foods. Although synthetic, PEGs have already been approved as biocompatible to humans, making them ideal carriers, note the researchers.

While these findings could impact the way lung can cer is treated, this discovery of how to more effectively deliver drugs to the body could also improve the treatment of such other illnesses as cardiovascular disease as well as other types of cancers.

This discovery is also helping scientists understand why some viruses are so effective. "Cylindrical delivery systems exist in nature, with two prime examples being the Ebola virus and the H5N1 Influenza virus," says Discher. "These findings can help us understand how this shape evolved in nature and the advantages of using it for treating people."
'"/>

Source:University of Pennsylvania School of Medicine


Related biology news :

1. NYU researchers simulate molecular biological clock
2. Vital step in cellular migration described by UCSD medical researchers
3. ASU researchers finds novel chemistry at work to provide parrots vibrant red colors
4. UCSD researchers maintain stem cells without contaminated animal feeder layers
5. Why do insects stop breathing? To avoid damage from too much oxygen, say researchers
6. New protein discovered by Hebrew University researchers
7. First real-time view of developing neurons reveals surprises, say Stanford researchers
8. Agilent Technologies releases automated literature search tool for biology researchers
9. Self-assembled nano-sized probes allow Penn researchers to see tumors through flesh and skin
10. Yale researchers identify molecule for detecting parasitic infection in humans
11. US life expectancy about to decline, researchers say

Post Your Comments:
*Name:
*Comment:
*Email:


(Date:12/16/2016)... , Dec. 16, 2016 The global wearable medical ... 12.14 billion by 2021 from USD 5.31 billion in 2016, at ... ... mainly driven by technological advancements in medical devices, launch of a ... preference for wireless connectivity among healthcare providers, and increasing focus on ...
(Date:12/15/2016)... 2016 Advancements in biometrics will ... and wellbeing (HWW), and security of vehicles ... passenger vehicles begin to feature fingerprint recognition, ... beat monitoring, brain wave monitoring, stress detection, ... pulse detection. These will be driven by ...
(Date:12/8/2016)... Research Future published a half cooked research report on Mobile Biometric ... Market is expected to grow over the CAGR of ~35% during ... ... Mobile Biometric Security and Service Market is increasing at a ... security from unwanted cyber threats. The increasing use of mobile device ...
Breaking Biology News(10 mins):
(Date:1/18/2017)... , Jan. 18, 2017  HUYA Bioscience International, (HUYA), ... China,s pharmaceutical innovations, announced today a ... Innovation and Investment Company (referred to as CAS Innovation). ... innovations discovered by leading scientists at CAS to meet ... HUYA is the first company to have recognized ...
(Date:1/18/2017)... Research Future published a half-cooked research report on Global Cancer Diagnostics ... CAGR of 12% during the period 2016 to 2022. ... ... without any control. These abnormal cells have the ability to invade ... spread to other parts of the body through the blood and ...
(Date:1/17/2017)... The Global Implantable Biomaterials Market is ... 7.5% over the next decade to reach approximately ... trends that the market is witnessing include increasing ... transplant surgeries and medical implants and technological advancements. ... into immunomodulatory biomaterials, natural, polymers, hydrogels and ceramics. ...
(Date:1/17/2017)...  Zimmer Biomet Holdings, Inc. (NYSE and SIX: ZBH) ... and earnings conference call will be broadcast live over ... a.m. Eastern Time.  A news release detailing the quarterly ... a.m. Eastern Time the morning of the conference call. ... via Zimmer Biomet,s Investor Relations website at http://investor.zimmerbiomet.com ...
Breaking Biology Technology: