Navigation Links
Penn researchers replace organ in adult mice using 'single-parent' stem cells

Researchers at the University of Pennsylvania School of Veterinary Medicine have derived uniparental embryonic stem cells - created from a single donor's eggs or two sperm - and, for the first time, successfully used them to repopulate a damaged organ with healthy cells in adult mice. Their findings demonstrate that single-parent stem cells can proliferate normally in an adult organ and could provide a less controversial alternative to the therapeutic cloning of embryonic stem cells.

"Creating uniparental embryonic stem cells is actually much more efficient than generating embryonic stem cells by cloning," said K. John McLaughlin, an assistant professor in Penn's Department of Animal Biology and researcher at the Center for Animal Transgenesis and Germ Cell Research at Penn's New Bolton Center. "The fact that we are not destroying a viable embryo in the process also avoids certain ethical issues that currently surround embryonic stem cell science."

McLaughlin and his colleagues report their findings in the Feb. 15 issue of the journal Genes & Development.

"While previous research has approached the possibility of using a woman's egg cells to create therapeutic stem cells, we discovered that we could actually repopulate an adult organ. To our surprise we also found that by using male-only derived embryonic stem cells, we could do the same," McLaughlin said. "In humans, this could provide a therapeutic route for both genders; members of either sex can use this technique to produce compatible stem cells, much like you might donate blood for your own use in advance of an operation."

Parthenogenesis, the act of creating an embryo without fertilization, is common in some plants, insects and animals, including the recent and celebrated case of the "virgin birth" of a komodo dragon in England. Humans and all other mammals, however, require two sets of chromosomes - one from each parent - to create a functioning embryo.Accordi ng to McLaughlin, this is because mammalian embryos rely on a process called genomic imprinting, where cells will read certain genes from only one parent. Imprinting failures could lead to the death of an embryo and are frequently associated with some forms of cancer and other genetic disorders.

"There was considerable doubt that uniparental stem cells would work since the lack a balanced set of chromosomes from both parents would interfere with the natural outcomes of genomic imprinting," McLaughlin said. "It turns out that genomic imprinting may be more a concern for developing stages and not so much a factor in the routine function of adult tissue, which was the ultimate goal for deriving these stem cells."

To study uniparental stem cells and the possible effects of genomic imprinting, McLaughlin's team created an experiment in which they would attempt to reconstitute the hematopoietic, or blood-producing, stem cells that were destroyed in mice exposed to radiation. The Penn researchers first created gynogenetic (egg-based) and androgenetic (sperm-based) embryonic stem cells and then injected those into blastocysts, a pre-embryonic clump of cells from a fertilized egg. The researchers could then harvest fetal liver cell precursors for transplant. Ultimately, the scientists found that uniparental cells, regardless of parent of origin, were able to functionally replenish the entire blood-producing system of adult mice.

The scientists were able to maintain animals for more than 12 months with entirely uniparental blood and were able to rescue other irradiated mice with bone marrow transplants from these animals. It is clear proof, according to McLaughlin, that uniparental cells could produce hematopoietic stem cells. In addition, McLaughlin's group found no evidence of disease linked to the transplanted cells.

In another finding critical for any clinical approach using embryonic stem cells, the researchers were a ble to reproduce much of their findings by producing blood stem cells from embryonic stem cells entirely in the culture dish before transplanting them.

The Penn researchers believe that using uniparental embryonic stem cells as a tissue source could provide a major advance in the alleviation of human disease, provided these results can be translated into human studies.


Source:University of Pennsylvania

Related biology news :

1. NYU researchers simulate molecular biological clock
2. Vital step in cellular migration described by UCSD medical researchers
3. ASU researchers finds novel chemistry at work to provide parrots vibrant red colors
4. UCSD researchers maintain stem cells without contaminated animal feeder layers
5. Why do insects stop breathing? To avoid damage from too much oxygen, say researchers
6. New protein discovered by Hebrew University researchers
7. First real-time view of developing neurons reveals surprises, say Stanford researchers
8. Agilent Technologies releases automated literature search tool for biology researchers
9. Self-assembled nano-sized probes allow Penn researchers to see tumors through flesh and skin
10. Yale researchers identify molecule for detecting parasitic infection in humans
11. US life expectancy about to decline, researchers say
Post Your Comments:

(Date:11/10/2015)... 10, 2015  In this report, the ... of product, type, application, disease indication, and ... report are consumables, services, software. The type ... biomarkers, efficacy biomarkers, and validation biomarkers. The ... diagnostics development, drug discovery and development, personalized ...
(Date:11/2/2015)... Calif. , Nov. 2, 2015  SRI International ... million to provide preclinical development services to the National ... contract, SRI will provide scientific expertise, modern testing and ... variety of preclinical pharmacology and toxicology studies to evaluate ... --> The PREVENT Cancer Drug Development Program ...
(Date:10/29/2015)... , Oct. 29, 2015  Connected health pioneer, ... driving the explosion of technology-enabled health and wellness, and ... new book, The Internet of Healthy Things ... sensors or smartphones even existed, Dr. Kvedar, vice president, ... of health care delivery, moving care from the hospital ...
Breaking Biology News(10 mins):
(Date:11/27/2015)... November 27, 2015 ... popularity of companion diagnostics is one of ... market with pharmaceutical companies and diagnostic manufacturers ... tests. . --> ... report on global cancer biomarkers market spread ...
(Date:11/25/2015)... , Nov. 25, 2015  PharmAthene, Inc. (NYSE MKT: ... adopted a stockholder rights plan (Rights Plan) in an ... loss carryforwards (NOLs) under Section 382 of the Internal ... --> PharmAthene,s use of its NOLs could be ... as defined in Section 382 of the Code. In ...
(Date:11/25/2015)... , Nov. 25, 2015  Neurocrine Biosciences, Inc. ... Gorman , President and CEO of Neurocrine Biosciences, will ... Conference in New York . ... visit the website approximately 5 minutes prior to the ... replay of the presentation will be available on the ...
(Date:11/25/2015)... PORTLAND, Oregon , November 25, 2015 /PRNewswire/ ... Deep Market Research Report is a professional and ... Genomics industry.      (Logo: ... basic overview of the industry including definitions, classifications, ... analysis is provided for the international markets including ...
Breaking Biology Technology: