Navigation Links
Patterns in genome organization may partially explain how microbial cells work

The location of a piece of real estate may be its most important feature to many Realtors, and bioengineering researchers at the University of California, San Diego (UCSD) and the University of Virginia have reported that the location of genes and other features distributed along the chromosomes of bacteria and simpler organisms also is fundamentally important to how microbial cells operate.

In a paper published Jan. 13 online in PLoS Computational Biology, the researchers reported large- and small-scale organizational patterns in the genomes of 135 bacteria ranging from those that cause typhoid fever and various other human infections to organisms that enrich the nitrogen content of soil. In addition, 16 more primitive microorganisms, including one that thrives in boiling hot springs, also exhibit patterns in their genomes that are highly nonrandom.

"This high degree of organization of prokaryotic genomes is a complete surprise, and this finding carried many implications that biologists might not have considered before," said Bernhard Palsson, a professor of bioengineering at UCSD's Jacobs School of Engineering and adjunct professor of medicine and co-author of the analysis. "These findings show that evolution of prokaryotes [organisms that lack nuclei] is constrained not just by variations in the content of genes, but also by the intricate ways in which those genes are arranged on chromosomes."

A bacterial cell usually operates with one copy of its genome. Until 2002, there had been no way to determine if a particular gene or area of the chromosome was segregated in any particular way inside the cell. New techniques that attach fluorescent "reporter" markers to predetermined spots on chromosomes have indicated that many bacterial genes tend to be found at specific cellular locations. Patterns are not obvious in the sequences of prokaryotic genomes, which led the team led by Palsson to use signal-processing methods to identify long-range spat ial patterns in the arrangement of most sequenced microbial genomes. They related the degree of organization in each genome they studied to various characteristics specific to each species.

"Bacterial chromosomes may have something like ZIP codes that fix groups of genes to certain locations within the cell where they are most needed," said Timothy E. Allen, a member of Palsson's team at UCSD who is currently an assistant professor of biomedical engineering at the University of Virginia. He said the surprising organization begs the question of what it means. The sequence order of bacterial genomes most likely affects the way in which the DNA is compressed, often more than 1,000-fold, to fit within the confines of the cell. "In some cases, it might suggest that a genome is arranged into relatively large physically distinct coils inside the cell, but nobody knows for certain," Allen said. "One of the take-home messages of our study is that we need to develop more ways to measure the location of specific genes within individual cells."

Palsson's team included Allen, recent Ph.D. graduate Nathan D. Price, and Ph.D. candidate Andrew R. Joyce. They downloaded the sequences of the 161 prokaryotic genomes from the CBS Genome Atlas Database and analyzed regions of each genome for the relative amount of four basic building blocks of DNA, the density of genes and expression level of those genes, and other factors.

To detect patterns in those features, they used wavelet analysis, a statistical technique used to identify patterns in geophysical data such as significant warming of the surface of the ocean off South America that causes El Niño climatic events. The wavelet analysis of bacterial genomes yielded "scalograms," maps colored to elucidate the strength of a variety of periodicities associated with chromosome position. Just as the wavelet analysis identified significant increases in sea surface temperatures; it also revealed nonrandom patterns in th e genomes of the 151 microorganisms studied.

"The analysis generated diagrams of psychedelically colored islands of statistically significant patterns floating in a sea of insignificant patterns," said Palsson, author of Systems Biology: Properties of Reconstructed Networks (Cambridge University Press, 2006). "Basically, it demonstrated that most bacterial genomes are highly organized. Our results demonstrate that there are significant evolutionary constraints that act upon genomes organization as well as upon genome content. That interplay between organization and function can't be ignored if we want to gain a better fundamental understanding of how a microbial cell works."


'"/>

Source:University of California - San Diego


Related biology news :

1. Man and mouse share genome structures
2. Whole genome fine map of rice completed
3. Study finds more than one-third of human genome regulated by RNA
4. A bacterial genome reveals new targets to combat infectious disease
5. Scientists decipher genome of fungus that can cause life-threatening infections
6. Highly adaptable genome in gut bacterium key to intestinal health
7. Fleshing out the genome
8. Agilent Technologies new genome analysis technology set to accelerate Australia fight against mesothelioma
9. wFleaBase: the Daphnia genome database
10. NHGRI targets 12 more organisms for genome sequencing
11. Chimp genome reveals a retroviral invasion
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:3/2/2017)... , March 2, 2017 Who risk to ... Download the full report: https://www.reportbuyer.com/product/4313699/ ... FINGERPRINT SENSOR FIELD? Fingerprint sensors using capacitive technology ... fingerprint sensor vendor Idex forecasts an increase of 360% ... devices and of the fingerprint sensor market between 2014 ...
(Date:2/28/2017)... 28, 2017 News solutions for biometrics, bag ... ... from 14 to 16 March, Materna will present its complete ... seamless travel is a real benefit for passengers. To accelerate ... their passenger touch point solutions to take passengers through the complete ...
(Date:2/24/2017)...  EyeLock LLC, a leader of iris-based identity ... biometric solution on the latest Qualcomm® Snapdragon™ 835 ... World Congress 2017 (February 27 – March ... 3, Stand 3E10. The Snapdragon ... platform—a combination of hardware, software and biometrics ...
Breaking Biology News(10 mins):
(Date:3/28/2017)... -RepliCel Life Sciences Inc. (OTCQB: REPCF) (TSXV: RP) (FRA:P6P2) ("RepliCel" ... clinical data from its phase 1/2 tendon repair study investigating ... (RCT-01) as a treatment for Achilles tendinosis. ... The clinical trial ... 6 months and showed no serious adverse events related to ...
(Date:3/28/2017)... ... 28, 2017 , ... Executive search firm, Slone Partners, announces ... Harvill is a distinguished life sciences expert with a proven track record in ... a wide range of services related to laboratory testing and analysis for the ...
(Date:3/27/2017)... ... March 27, 2017 , ... IsoPlexis Corporation (IsoPlexis), a ... disease and more through a single-cell precision engineering platform, today announced it has ... in the laboratory of Dr. James Heath at the California Institute of ...
(Date:3/27/2017)... (PRWEB) , ... March 27, 2017 , ... ... cancer (mCRC) generally produce small, heterogeneous samples with limited tumor content in a ... remain to be resolved, such as the need for reliable detection of low ...
Breaking Biology Technology: