Navigation Links
Parasitic plants sniff out hosts

Parasitic plants do not haphazardly flail about looking for a host but sense volatile chemicals produced by other plants and identify potential hosts by their emissions, according to a team of Penn State chemical ecologists.

"We are interested in how plants respond to their environment, and have looked at plant insect interactions," says Dr. Consuelo M. De Moraes, assistant professor of entomology. "It was surprising to see how little was available on how above-ground parasitic plants find their hosts from far-off."

The researchers looked at Cuscuta pentagona, field dodder or five angle dodder, a plant that infests a variety of crops including tomatoes, carrots, onions, citrus trees, cranberries and alfalfa and reported their finding in today's (Sept. 29) issue of Science. Dodder grows throughout the world and is a difficult pest to eliminate because chemicals that kill the parasite also often kill the host plant.

"There is currently no reliable way to get rid of these pests," says Justin B. Runyon, graduate student in entomology. "It is estimated that in California each year, a 20 percent infestation of the tomato crop reduces yield by 25 percent and causes a loss of 4 million dollars."

The researchers used a variety of experiments to determine how newly emerging dodder shoots find a host. The length of time these parasites can live without a host is determined by the amount of food stored in the seed, but they can only grow about four inches before they die.

"These plants have no roots and barely have leaves and the flowers are very tiny," says Mark C. Mescher, assistant professor of entomology.

First the researchers placed dodder seedlings in a water vial at the center of a filter paper disk. A tomato plant was placed near the edge of the disk and the dodder plant was allowed to grow and attempt to locate its host. Dodder plants search for hosts by growing and moving in a circular pattern. In the past , many assumed that the search was random and the location of a host simply a chance encounter. After four days, when the plant was growing flat on the filter paper, the researchers measured the direction of the shoot.

The researchers report that 80 percent of the dodder plants grew onto the side of the filter paper nearest the tomato, with many growing directly towards the tomato plant. Statistical analysis provided strong evidence for directed growth by dodder, but did not indicate what causes the directionality.

The Penn State researchers then challenged dodder seedlings with artificial tomato plants, pots of moist dirt, and vials of green or red water. None of these objects elicited any directional growth. Then, to narrow down the possible cues being used, they tested the seedlings' response to tomato plants slightly separated from the dodder seedlings, out of view so to speak, in a set-up designed to block possible light cues. The researchers observed a growth response toward the tomato plants similar to that in their first experiment. Finally, to firmly establish that volatile chemicals from the host plant were causing this response, the researchers used the same set-up to examine the response to extracted host volatiles, using a solvent-only sample as a control in the opposite direction. They again observed a strong growth response toward the tomato volatiles.

"This showed that host volatiles elicit a growth response in the absence of any other plant-derived clues," says Mescher. "However, while volatile chemicals might be key, our results do not rule out the possibility that other cues such as light or shade may play a role."

After establishing the role of volatiles in leading the parasite plants to their tomato hosts, the researchers looked at other potential hosts including wild impatiens, and showed that the parasites were attracted to a wide variety of plants. They even found attraction to wheat plants, a poor h ost on which the dodder seedlings do not survive. However, when the researchers offered the seedlings a choice between wheat and tomato plants, the tomato won out, indicating that the parasites have some way of deciding between a good host and a bad host.

The researchers examined responses to some of the individual compounds released by host plants. Of seven compounds tested from tomato, three caused a directional growth response in dodder. One of these chemicals is also released by wheat, which might explain why wheat is somewhat attractive despite being a poor host. However, another chemical compound from wheat actually repels the dodder seedlings, perhaps explaining why the odor of wheat is less attractive than that of the preferred host tomato..

The Penn Stsate researchers note that the identification of at least one repellent compound raises the possibility of eventually using airborne chemicals to deter plant parasites. Looking forward, they would also like to determine exactly how the parasites are able to sense and respond to host volatiles. They hope to identify the specific chemical receptors involved. They are also examining the defensive mechanisms by which host plants respond to attack by parasitic plants.


'"/>

Source:Penn State


Related biology news :

1. Parasitic worms used to fight bowel disease
2. Emory Eye Center Implants Its First Retinal Chips In Patients With Retinitis Pigmentosa
3. Antibodies from plants protect against anthrax
4. New RNA polymerase discovered in plants
5. Transgenic plants remove more selenium from polluted soil than wild plants, new tests show
6. Scientists discover how plants disarm the toxic effects of excessive sunlight
7. Defenseless plants arm themselves with metals
8. At long last, scientists figure out how plants grow
9. Precise Timing Enabled Pig-to-rat Transplants To Cure Diabetes
10. Engineers improve plastics potential for use in implants by linking it to biological material
11. Innovative coating could give medical implants a longer life
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:11/22/2016)... 22, 2016 According to the new market research ... Face, Vein, Signature, Voice), Multi-Factor), Component (Hardware and Software), Function (Contact and ... the market is expected to grow from USD 10.74 Billion in 2015 ... between 2016 and 2022. Continue Reading ... ...
(Date:11/17/2016)... 2016 Global Market Watch: Primarily supported ... Population-Based Banks and Academics) market is to witness a value ... shows the highest Compounded Annual Growth Rate (CAGR) of 10.75% ... the analysis period 2014-2020. North America ... by Europe at 9.56% respectively. ...
(Date:11/15/2016)... Research and Markets has announced the addition of the ... their offering. ... The global bioinformatics market ... 6.21 Billion in 2016, growing at a CAGR of 21.1% during ... is driven by the growing demand for nucleic acid and protein ...
Breaking Biology News(10 mins):
(Date:12/2/2016)... , December 2, 2016 The ... 2021, growing at a CAGR of 7.3% during the forecast period ... hospitals and diagnostic laboratories segment accounted for the largest share of ... ... report on global immunohistochemistry (IHC) market spread across 225 pages, profiling ...
(Date:11/30/2016)... 30, 2016 /PRNewswire/ - Portage Biotech Inc. ("Portage" or ... is excited to announce the formation of EyGen, ... preclinical ophthalmology assets through proof of concept. EyGen,s ... by Portage Pharmaceuticals Limited and being developed for ... and anterior segment diseases. This agent has the ...
(Date:11/30/2016)... SAN DIEGO and BEIJING ... Ltd., a leading commercial provider of genomic services and ... expertise, announced today that it has completed a USD ... China Merchants Bank Co., Ltd.,s CMB International Capital Management ... SDIC Innovation Investment Management Co., Ltd. ("SDIC Innovation") and ...
(Date:11/30/2016)... Woburn, MA (PRWEB) , ... November 30, 2016 ... ... broadband light sources for advanced technology applications, introduces the 5th generation, ultra-bright, Laser-Driven ... the highly successful Laser-Driven Light Source (LDLS™) technology, the EQ-77 offers higher radiance ...
Breaking Biology Technology: