Navigation Links
Paramecia adapt their swimming to changing gravitational force

For many single-celled organisms living in water, the force is always against them. The classic example is the slipper-shaped paramecium, which consistently swims harder going up than going down, just to keep from sinking. Now physicists Karine Guevorkian and James Valles of Brown University have worked out a way to turn gravity on its head and see how the creatures respond.

The researchers placed a vial with pond water and live paramecia inside a high-powered electromagnet at the National High Magnetic Field Laboratory in Tallahassee, Fla. The organisms are less susceptible to a magnetic field than plain water is, so the magnetic field generated inside the vial "pulls" harder on the water than on the cells. If the field is pulling down, the cells float. If it's pulling up, they sink.

Using water alone, Valles and Guevorkian were able to increase the effect of gravity by about 50 percent. To increase the effect even further, they added a compound called Gadolinium-diethylene-triamine-pentaacetate (Gd-DTPA) to the water. Gd-DPTA is highly susceptible to induced magnetic fields such as those generated in electromagnets. This allowed the researchers to make the water much "heavier" or "lighter," relative to the paramecia, achieving an effect up to 10 times that of normal gravity. The magnetic field is continuously adjustable, so Valles and Guevorkian were also able to create conditions simulating zero-gravity and inverse-gravity.

By dialing the magnetic field up or down, the researchers could change the swimming behavior of the paramecia dramatically. In high gravity, the organisms swam upward mightily to maintain their place in the water column. In zero gravity, they swam up and down equally. And in reverse gravity, they dove for where the sediments ought to be.

"If you want to make something float more," said Valles, "you put it in a fluid and you pull the fluid down harder than you pull the thing down. And that's what we basically do with the magnet. That causes the cell to float more ?and that turns gravity upside down for the cell."

Cranking the field intensity even higher, Valles and Guevorkian could test the limits of protozoan endurance. At about eight times normal gravity, the little swimmers stalled, swimming upward, but making no progress. At this break-even point, the physicists could measure the force needed to counter the gravitational effect: 0.7 nano-Newtons. For comparison, the force required to press a key on a computer keyboard is about 22 Newtons or more than 3 billion times as strong.

Space-based research has demonstrated many puzzling biological effects related to reduced gravity, such as changes in bone cell development and gene expression. But methods for manipulating gravity in the Earth-based laboratory have been few and troublesome, hindering further research in these areas. This new method will allow researchers to subject small biological systems to gravitational effects similar to those encountered in space, allowing less expensive and more complex experiments on the biological response to altered gravity.


'"/>

Source:Brown University


Related biology news :

1. Highly adaptable genome in gut bacterium key to intestinal health
2. Low level of extinction during ice age linked to adaptability
3. 15 generations of untrained jocks, couch potatoes show big physiological adaptations
4. Otter adaptations: How do otters remain sleek and warm
5. Retina adapts to seek the unexpected, ignore the commonplace
6. Plant genes identified that can form basis for crops better adapted to environmental conditions
7. CO2 sensing proves critical for fungal pathogens to adapt to life in air and human hosts
8. Scientists find mutations that let bird flu adapt to humans
9. Asexual worm quickly adapts to soil contamination
10. Priming embryonic stem cells to fulfill their promise
11. Protein offers way to stop microscopic parasites in their tracks
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:5/3/2016)... VILNIUS, Lithuania , May 3, 2016 /PRNewswire/ ... today released the MegaMatcher Automated Biometric Identification ... deployment of large-scale multi-biometric projects. MegaMatcher ABIS can ... and accuracy using any combination of fingerprint, face ... of MegaMatcher SDK and MegaMatcher ...
(Date:4/26/2016)... , April 27, 2016 ... "Global Multi-modal Biometrics Market 2016-2020"  report to their ... , The analysts forecast the global ... of 15.49% during the period 2016-2020.  ... of sectors such as the healthcare, BFSI, transportation, ...
(Date:4/14/2016)... BioCatch ™, the global ... the appointment of Eyal Goldwerger as CEO. ... Goldwerger,s leadership appointment comes at a time of significant ... of its platform at several of the world,s largest ... unique cognitive and physiological factors, is a winner of ...
Breaking Biology News(10 mins):
(Date:5/18/2016)... ... ... Ryan Benton was diagnosed with Duchenne Muscular Dystrophy (DMD) at the age of ... is a relatively common progressive genetic disorder, which causes aggressive deterioration of the muscles. ... met with the founder of the Stem Cell Institute in Panama City, ...
(Date:5/17/2016)... ... May 17, 2016 , ... ResearchDx, the premier ... based in Saudi Arabia, have formed a partnership to bring their expertise in ... Kingdom of Saudi Arabia (KSA). , The partnership addresses the specific needs ...
(Date:5/17/2016)... , May 17, 2016 ... in Basel, Switzerland announced ... inhibitor of P38 mitogen-activated protein kinase. ... Strekin will build the necessary research foundation ... in which MAP Kinases play fundamental roles. Pamapimod ...
(Date:5/17/2016)... ... May 17, 2016 , ... HOLLOWAY AMERICA, a stainless steel ... Chapter’s Tech Ed Day on Thursday, May 19 in St. Louis, Missouri. The event ... AMERICA will participate in a vendor showcase during the early afternoon of the event, ...
Breaking Biology Technology: