Navigation Links
OHSU lab finds meth receptor that could lead to therapy

A recently discovered signaling system in the brain has just been shown to be turned on by methamphetamine, an Oregon Health & Science University study found.

The signaling system could soon become a target for therapies aiming to reverse meth’s adverse health effects as well as reduce the craving that drives its abuse.

Working in the recently opened Program in Chemical Biology in the OHSU School of Medicine's Department of Physiology and Pharmacology, scientists demonstrated the new target of meth, and its close relative amphetamine, is a G protein-coupled receptor known as trace amine-associated receptor 1, or TAAR1 for short.

"The Program in Chemical Biology at OHSU is one of the few in the U.S. that allows biologists and chemists to work side-by-side, using their combined skills to identify drug targets and to design new drugs to treat diseases like drug addiction," said David Dawson, Ph.D., OHSU professor and chairman of physiology and pharmacology. "Chemical space ?that is, the number of possible drug molecules that could exist ?is incredibly large. Our aim is to mine that space in order to uncover novel therapies."

TAAR1 was originally discovered in the laboratory of David K. Grandy, Ph.D., OHSU professor of physiology and pharmacology. Grandy’s lab found TAAR1 is activated by chemical relatives of meth known as phenylethylamines. The messenger RNA that codes for TAAR1 is expressed throughout the brain, including areas involved in motivation and drug craving, olfaction ?the sense of smell ?and temperature regulation, to name a few.

"With this kind of pharmacological profile and brain distribution, we hypothesized TAAR1 could mediate some of meth’s metabolic and behavioral effects," explained Grandy, who also directed the groundbreaking research.

"In our most recent article, we provide clear evidence that methamphetamine is a full and potent agonist of TAAR1. In other words, TAAR1 has the necessary features to be considered a real target of methamphetamine and amphetamine in rodents and probably humans, too."

Grandy added that it's his hope that "these findings will eventually lead to the development of new pharmaceuticals that reduce dependence on and craving for methamphetamine."

The study is published in the April edition of the Journal of Pharmacology and Experimental Therapeutics.

Earlier research in the Grandy laboratory demonstrated that meth and amphetamine stimulate the production of an important second messenger known as cyclic adenosine monophosphate, or cAMP, inside cells expressing the rat TAAR1. Encouraged by this observation, Grandy's team explored the effects of these drugs on mouse TAAR1 and a human-rat TAAR1 hybrid and found all three receptors respond in similar ways.

"The results of this study unequivocally demonstrate that meth and amphetamine are able to directly activate this receptor in the laboratory, making it likely that TAAR1 is activated in chronic users of meth," the researchers state in their article, whose lead author is Edmund Reese, a graduate student working in Grandy’s laboratory. Other members of the research team include James Bunzow, M.S.; Seksiri Arttamangkul, Ph.D.; and Mark Sonders, Ph.D.

Grandy and his colleagues argue that TAAR1 represents a completely new target for pharmaceutical therapy to treat meth addiction and also reduce the negative manifestations of its abuse.

"Meth addiction is such a problem and we have nothing to treat it with except group support therapy," Grandy said. "Now we have a new target, something completely different to focus on, and we think that offers a lot of hope."

Grandy is actively collaborating with Thomas Scanlan, Ph.D., director of the Program in Chemical Biology who recently relocated to Portland from the University of California, San Francisco. Scanlan’s laboratory has synthesized more than 150 new compounds that are being analyzed for their ability to selectively interfere with TAAR1 and block its activity.

"So we're already on a roll," Grandy said. The goal is to "take them to the point where they can be tested in humans."

Still, there's more to be learned about how meth and amphetamine affect the entire TAAR1 signaling system that is composed of six receptor genes in humans. "When you put it all together, what you realize is that meth acts on several signaling systems and that a successful therapeutic treatment will likely require modulation of several targets simultaneously. We still have a lot to learn about how meth affects the body through this system," Grandy said. "We have our work cut out for us."

Source:Oregon Health & Science University

Related biology news :

1. Current human embryonic stem cell lines contaminated UCSD/Salk team finds
2. Study finds more than one-third of human genome regulated by RNA
3. ASU researchers finds novel chemistry at work to provide parrots vibrant red colors
4. Same mutation aided evolution in many fish species, Stanford study finds
5. NC State scientist finds soft tissue in T. rex bones
6. Genrate: a generative model that finds and scores new genes and exons in genomic microarray data
7. Genetically modified rice in China benefits farmers health, study finds
8. Survey finds silver contamination in North Pacific waters
9. Anti cancer virotherapy well tolerated in first human administration, research finds
10. NASA study finds snow melt causes large ocean plant blooms
11. Oceans more vulnerable to agricultural runoff than previously thought, study finds

Post Your Comments:

(Date:11/12/2015)... 11, 2015   Growing need for low-cost, ... has been paving the way for use of ... discrete analytes in clinical, agricultural, environmental, food and ... used in medical applications, however, their adoption is ... to continuous emphasis on improving product quality and ...
(Date:11/10/2015)... Nov. 10, 2015 About ... that helps to identify and verify the identity ... considered as the secure and accurate method of ... a particular individual because each individual,s signature is ... especially when dynamic signature of an individual is ...
(Date:11/4/2015)... ALBANY, New York , November 4, 2015 /PRNewswire/ ... According to a new market report published by Transparency ... Size, Share, Growth, Trends and Forecast 2015 - 2022", ... value of US$ 30.3 bn by 2022. The market ... during the forecast period from 2015 to 2022. Rising ...
Breaking Biology News(10 mins):
(Date:11/25/2015)... November 25, 2015 Studies reveal ... human plaque and pave the way for more effective treatment ... cats     --> ... diagnosed health problems in cats, yet relatively little was understood ... collaborative studies have been conducted by researchers from the WALTHAM ...
(Date:11/25/2015)... 25, 2015 Orexigen® Therapeutics, Inc. (Nasdaq: ... a fireside chat discussion at the Piper Jaffray 27th ... . The discussion is scheduled for Wednesday, December 2, ... .  A replay will be available for 14 days ... , Julie NormartVP, Corporate Communications and Business Development , ...
(Date:11/24/2015)... 2015 Cepheid (NASDAQ: CPHD ) today ... following conference, and invited investors to participate via webcast. ...      Tuesday, December 1, 2015 at 11.00 a.m. Eastern Time ...      Tuesday, December 1, 2015 at 11.00 a.m. Eastern Time ... New York, NY      Tuesday, December 1, 2015 ...
(Date:11/24/2015)... 24, 2015 /PRNewswire/ - Aeterna Zentaris Inc. (NASDAQ:  AEZS) (TSX: ... behalf of the Toronto Stock Exchange, confirms that as ... no corporate developments that would cause the recent movements ... --> About Aeterna Zentaris Inc. ... --> Aeterna Zentaris is a specialty biopharmaceutical company ...
Breaking Biology Technology: