Navigation Links
Novel ultrafast laser detection of cancer cells also may improve understanding of stem cells

To investigate tumors, pathologists currently rely on labor-intensive microscopic examination, using century-old cell-staining methods that can take days to complete and may give false readings.

A lightning-fast laser technique, led by Sandia National Laboratories researcher Paul Gourley, has provided laboratory demonstrations of accurate, real-time, high-throughput identification of liver tumor cells at their earliest stages, and without invasive chemical reagents.

The technique generates a laser beam in single human cells pumped from a flask through tiny microchannels. The beam is altered by what it encounters. These changes, registered by an imaging spectrometer, instantly identify cancer-modified mitochondria in cells gone wrong. Mitochondria are known as the power pack of cells, energizing them like batteries do flashlight bulbs.

"There are hundreds of mitochondria, sometimes thousands, in a cell," says Gourley. "To see them in the old way requires a time-consuming process like fluorescent tagging or a chemical reagent. We've found we can see them immediately by light alone."

The techniques could be critical to advancing early detection, diagnosis, and treatment of disease.

More technically put, "To rapidly assess the health of a single mammalian cell," says Gourley, "the key discovery was the elucidation of biophotonic differences in normal and cancer cells by using intracellular mitochondria as biomarkers for disease. This technique holds promise for detecting cancer at a very early stage and could nearly eliminate delays in diagnosis and treatment."

The technique is effective because "it measures changes in the cell architecture, especially those arising from alterations in protein density, cytoskeleton shape, and distribution of mitochondria - changes that occur when a cell becomes cancerous," says Gourley.

"One would think that if a cell became nonfunctional, it would become disorganized. In cancer, ho wever, that's not the case. A cancer cell is like an insurgent terrorist with a very well-defined agenda. It rearranges the cytoskeleton and the arrangement of mitochondria in the cell. It's no longer a cooperative agent in a collection of cells but becomes malicious, tries to get outside the area, and hijacks the respiratory machinery of a cell."

The biocavity laser

It is these changes - a kind of beefing-up of the criminal forces - that Gourley's device, called a biocavity laser, detects.

A nano-thin layering of gallium aluminum arsenide combinations send up numerous tiny beams from a small cross-sectional generating area. These beams are reinforced or thwarted by the position and density of the mitochondria.

"The pictures we get from normal and cancer cells are very different," says Gourley. "Mitochondria conspire to cluster around the nucleus and work together to supply energy to the healthy, functioning cell. In contrast, the mitochondria in the cancer cell sit all over, isolated and balled up in a quiescent, non-functioning state. Apparently, the rapidly growing cancer cells derive energy from an alternative source such as free glucose in the cell."

Fortunately, the mitochondrion is nearly the same size as the light wavelength of about 800 nanometers, a frequency otherwise little absorbed by the body. Because of this close match, the laser is exquisitely sensitive to subtle changes in the mitochondria size and effects of clustering. To date, the research team has found that 90 to 95 percent of light scatter generated is from optical properties of mitochondria.

Working with UCSD

According to Bob Naviaux, professor at the School of Medicine at the University of California at San Diego and co-director of its Mitochondrial and Metabolic Disease Center, "What's attractive about this novel optical method for identifying cancer cells is it's a very rapid and general method that potentially can be applied to canc er cells from solid tumors as well as hematological malignancies like leukemia."

Naviaux looks forward to examining a wider population of cancer cells to validate the method, combining the resources of his Center with Sandia's laser expertise.

A project proposal has been filed with Sandia to support collaborative work between the unique research capabilities of UCSD and Sandia. "There are 300 different cell types in the human body and different mitochondria for each different shape and arrangement," says Naviaux. "We want a library of spectra from different cell types and their cancers."

Aiding stem cell research

Of further interest is that the biocavity laser may be applied not only to identifying the spectra associated with cancer cells but also those associated with stem cells, and how these optical signals change as they differentiate into nerve, muscle, and other tissues. "At present, there's no rapid method for identifying the transitional states [of a stem cell] with the functional cell type it eventually becomes. That process is a mysterious sequence of metabolic and genetic changes." There are, he says, metabolic similarities between stem cells and cancer cells, and researchers would like to clearly identify the differences.

"Stem cells are therapeutic," says Naviaux. "How are their spectra distinct from cancer?"

A difficulty still ahead is viewing cancer cells in fluids taken directly from the body, rather than isolated by type in a flask. This problem will be solved by winnowing out unlikely particles through size and frequency.


'"/>

Source:DOE/Sandia National Laboratories


Related biology news :

1. Novel Asthma Study Shows Multiple Genetic Input Required; Single-gene Solution Shot Down
2. Novel technology detects human DNA mutations
3. Novel antiviral technology inhibits RSV infection in mice
4. Novel Enzyme Shows Potential As An Anti-HIV Target
5. Novel Therapy Tested in Mice Could Chase Away Cat Allergies
6. Discovery Could Lead To Novel Approaches In HIV Treatment
7. Research Using Mouse Models Reveals A Novel Key Player In The Initiation Of Colon Cancer
8. Novel gene-silencing nanoparticles shown to inhibit Ewings sarcoma
9. Novel live reporting system to track cells
10. Field of beams - Novel system uses polarized light pulses to reveal crop health
11. Novel compounds show promise as safer, more potent insecticides
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:1/4/2017)... , Jan. 4, 2017  CES 2017 – ... biometric sensor technology, today announced the launch of ... sensor systems, the highly-accurate biometric sensor modules that ... biometric technology, experience and expertise. The two new ... designed specifically for hearables, and Benchmark BW2.0, a ...
(Date:12/20/2016)... , Dec. 20, 2016 The ... sharing, rental and leasing is stoking significant interest ... radio frequency technology, Bluetooth low energy (BLE), biometrics ... as the next wave of wireless technologies in ... access system to advanced access systems opens the ...
(Date:12/16/2016)... Research and Markets has announced the addition ... to 2021" report to their offering. ... The biometric vehicle access system market, ... of 14.06% from 2016 to 2021. The market is estimated to ... 854.8 Million by 2021. The growth of the biometric vehicle access ...
Breaking Biology News(10 mins):
(Date:1/18/2017)... January 18, 2017 According to a new market research ... Cytology, Infectious Disease), & End User (Molecular Diagnostic Laboratories, Academic and Research Institutions) ... reach USD 739.9 Million by 2021 from USD 557.1 Million in 2016, growing ... ... MarketsandMarkets Logo ...
(Date:1/18/2017)... Mass. , Jan. 18, 2017 ... applying mechanistic modeling to drug research and development, ... PhD, Co-Founder, President, and CEO of Applied BioMath, ... for Informatics and Modeling (BAGIM) Meeting on Thursday ... Cambridge , MA.   Dr. Burke,s ...
(Date:1/18/2017)... (PRWEB) , ... January 18, 2017 , ... ... for Clinical Ops Executives 2017 in its continued commitment to the advancement of ... makers to discuss current issues related to clinical trial planning and management. ...
(Date:1/18/2017)... ... January 18, 2017 , ... Whitehouse Labs has furthered ... Molecular Research, Inc. (AMRI), the scientific staff dedicated to Extractables / Leachables & ... further growth in 2017. Extractable & Leachable evaluations have become increasingly more vital ...
Breaking Biology Technology: