Navigation Links
Novel molecular 'signature' marks DNA of embryonic stem cells

A team of scientists announced today a critical step on the path of realizing the promise of embryonic stem (ES) cells for medicine. As described in the April 21 issue of Cell, the researchers have discovered unique molecular imprints coupled to DNA in mouse ES cells that help explain the cells' rare ability to form almost any body cell type. These imprints, or "signatures," appear near the master genes that control embryonic development and probably coordinate their activity in the early stages of cell differentiation. Not only do these findings help to unlock the basis for ES cells' seemingly unlimited potential, they also suggest ways to understand why ordinary cells are so limited in their abilities to repair or replace damaged cells.

"This is an entirely new and unexpected discovery," said Brad Bernstein, lead author of the study, assistant professor at Massachusetts General Hospital and Harvard Medical School, and a researcher in the Chemical Biology program at the Broad Institute. "It has allowed us to glimpse the molecular strategies that cells use to maintain an almost infinite potential, which will have important applications to our understanding of normal biology and disease."

Chromatin–the protein scaffold that surrounds DNA ?acts not only as a support for the double helix but also as a kind of gene "gatekeeper." It accomplishes the latter task by selecting which genes to make active or inactive in a cell, based on the nearby chemical tags joined to its backbone. By examining the chromatin in mouse ES cells across the genome, the scientists discovered an unusual pair of overlapping molecular tags in the chromatin structure, which together comprise what they called a "bivalent domain," reflecting the dual nature of its design. These domains reside in the sections of chromatin that control the most evolutionarily conserved portions of DNA, particularly the key regulatory genes for embryonic development.

"These signatures appear freq uently in ES cells, but largely disappear once the cells choose a direction developmentally," said Bernstein. "This suggests they play a significant role in regulating the cells' unique plasticity."

The remarkable design of bivalent domains, which has not been previously described, merges two opposing influences ?one that activates genes and another that represses them. When combined in this way, the negative influence seems to prevail and, as a result, the genes positioned near bivalent domains are silenced. However, the activating influence appears to keep the genes poised for later activity. "For genes, this is equivalent to resting one finger on the trigger," said Stuart Schreiber, an author of the Cell paper, the director of the Chemical Biology program at the Broad Institute, and professor at Harvard University. "This approach could be a key strategy for keeping crucial genes quiet, but primed for when they will be most needed."

Although most people think of heredity in terms of DNA and the genes encoded by it, chromatin also carries inherited instructions known as "epigenetic" information. Thus, the chromatin scaffold (including its bivalent domains) forms a sort of molecular memory that, along with DNA, can be transferred from a cell to its descendants. Yet ES cells signify the earliest cellular ancestors, leaving the question of how epigenetic history first begins. The scientists found that bivalent domains coincide with characteristic DNA sequences, indicating that this molecular memory may originate from the DNA itself. "How the initial epigenetic state is established and then altered during development has implications not only for stem cell biology, but also for cancer and other diseases where epigenetic defects are implicated," Bernstein said.

A related study led by Rick Young, a member of the Whitehead Institute and an associate member of the Broad Institute, appears in the same issue of Cell and describes new control feature s found in human ES cells.


'"/>

Source:Broad Institute of MIT and Harvard


Related biology news :

1. Novel Asthma Study Shows Multiple Genetic Input Required; Single-gene Solution Shot Down
2. Novel technology detects human DNA mutations
3. Novel antiviral technology inhibits RSV infection in mice
4. Novel Enzyme Shows Potential As An Anti-HIV Target
5. Novel Therapy Tested in Mice Could Chase Away Cat Allergies
6. Discovery Could Lead To Novel Approaches In HIV Treatment
7. Novel ultrafast laser detection of cancer cells also may improve understanding of stem cells
8. Research Using Mouse Models Reveals A Novel Key Player In The Initiation Of Colon Cancer
9. Novel gene-silencing nanoparticles shown to inhibit Ewings sarcoma
10. Novel live reporting system to track cells
11. Field of beams - Novel system uses polarized light pulses to reveal crop health
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:6/20/2016)... -- Securus Technologies, a leading provider of civil ... investigation, corrections and monitoring announced that after exhaustive ... the final acceptance by all three (3) Department ... (MAS) installed. Furthermore, Securus will have contracts for ... October, 2016. MAS distinguishes between legitimate wireless device ...
(Date:6/9/2016)... in attendance control systems is proud to announce the introduction of fingerprint attendance control ... right employees are actually signing in, and to even control the opening of doors. ... ... ... Photo - ...
(Date:6/3/2016)... , June 3, 2016 ... Management) von Nepal ... und Lieferung hochsicherer geprägter Kennzeichen, einschließlich Personalisierung, ... führend in der Produktion und Implementierung von ... der Ausschreibung im Januar teilgenommen, aber Decatur ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... June 23, 2016 /PRNewswire/ - FACIT has announced ... biotechnology company, Propellon Therapeutics Inc. ("Propellon" ... commercialization of a portfolio of first-in-class WDR5 inhibitors ... such as WDR5 represent an exciting class of ... precision medicine for cancer patients. Substantial advances have ...
(Date:6/23/2016)... YORK , June, 23, 2016  The Biodesign ... to envision new ways to harness living systems and ... Modern Art (MoMA) in New York City ... than 130 participating students, showcased projects at MoMA,s Celeste ... Paola Antonelli , MoMA,s senior curator of architecture ...
(Date:6/23/2016)... , June 23, 2016 Apellis ... Phase 1 clinical trials of its complement C3 ... single and multiple ascending dose studies designed to ... (PD) of subcutaneous injection in healthy adult volunteers. ... (SC) either as a single dose (ranging from ...
(Date:6/23/2016)... ... June 23, 2016 , ... ... and technical consulting, provides a free webinar on Performing Quality Investigations: ... 2016 at 12pm CT at no charge. , Incomplete investigations are still a ...
Breaking Biology Technology: