Navigation Links
Notorious cancer gene may work by destroying messenger

A new study suggests how a notorious cancer gene may contribute to tumor growth.

The insight emerged from a long-running study of a protein called PMR1, the key player in an unusual mechanism that cells use to quickly stop production of certain important proteins.

Researchers discovered that PMR1 is activated ?or “turned on ?by another molecule, an energy-packing protein called Src (pronounced “sark?.

Discovered in 1977, Src became the first “oncogene??mutated genes that help make cells cancerous. Oncogenes are altered forms of genes that control cell growth and cell division.

These findings provide insight into how Src might contribute to cancer development.

The study by researchers with the Ohio State University Comprehensive Cancer Center is published in the March 9 issue of the journal Molecular Cell.

“The link between Src and cancer was discovered 30 years ago, but to this day, we still don't know its exact role in tumor development,?says principal investigator Daniel R. Schoenberg, professor of molecular and cellular biochemistry.

“Our data suggest that Src may promote cancer by causing PMR1 to halt production of proteins that normally put the brakes on cell growth ?tumor-suppressor proteins, for example, or other growth-regulating proteins.?

In healthy cells, Src helps control cell proliferation, differentiation, survival and movement. Mutated Src is found in about half of all colon, liver, lung, breast and pancreatic tumors, and the amount of Src can be significantly higher in cancer cells compared to normal cells.

Earlier research led by Schoenberg found that PMR1 helps control protein production by destroying particular messenger RNAs (mRNAs), molecules that carry the information used to assemble a protein.

That work showed that PMR1 attaches to the mRNAs and remains there as a silent passenger. If it receives the proper signal, however, the protein ch ops up and destroys the mRNA, which instantly stops production of that protein.

Cells use that mechanism to control the production of proteins such as growth factors, which activate genes in response to a hormone or other signal.

PMR1 also plays a key role in Cooley's anemia, which causes the loss of red blood cells in infants and children.

For the present study, Schoenberg and coauthor Yong Peng, a research associate in Schoenberg's laboratory, wanted to learn how PMR1 is activated to attach to mRNAs.

They found that activation occurs when PMR1 is momentarily joined by an unidentified enzyme. Contact with this enzyme changes the properties of PMR1, and this enables it to join with, or bind to, its target mRNA.

Peng then used monoclonal antibodies to isolate PMR1 and the enzyme while the two were bound together, capturing both. After separating the two, the investigators identified the enzyme as Src, which is a member of a large family of molecules called tyrosine kinases. These molecules act like switches that turn other molecules on and off, including PMR1.

“That's the real excitement about this paper,?Schoenberg says. “We came at this with an interest in mRNA decay, and we may have stumbled across a fundamental mechanism of cancer.?

Next, Schoenberg and his associates Xiaoqiang Liu and Elizabeth Murray will use three cancer-cell lines to try to identify what messenger RNAs ?which will also tell them what proteins ?are targeted and destroyed by PMR1.

“That will help tell us whether Src works through PMR1 to contribute to cancer,?Schoenberg says.

Funding from the National Institute for General Medical Sciences supported this research.
'"/>

Source:Ohio State University


Related biology news :

1. Viral DNA sequence a possible trigger for breast cancer
2. Enzyme, lost in most mammals, is shown to protect against UV-induced skin cancer
3. Its not all genetic: Common epigenetic problem doubles cancer risk in mice
4. Columbia research lifts major hurdle to gene therapy for cancer
5. Combination therapy boosts effectiveness of telomere-directed cancer cell death
6. Mitochondrial DNA mutations play significant role in prostate cancer
7. New imaging method gives early indication if brain cancer therapy is effective, U-M study shows
8. BRCA1 causes ovarian cancer through indirect, biochemical route
9. Researchers identify target for cancer drugs
10. Weizmann Institute scientists develop a new approach for directing treatment to metastasized prostate cancer in the bones.
11. First atlas of key brain genes could speed research on cancer, neurological diseases

Post Your Comments:
*Name:
*Comment:
*Email:


(Date:5/16/2017)...   Bridge Patient Portal , an enterprise ... EMR Systems , an electronic medical record solutions ... established a partnership to build an interface between ... Centricity™ products, including Centricity Practice Solution (CPS), Centricity ... new integrations will allow healthcare delivery networks using ...
(Date:4/17/2017)... April 17, 2017 NXT-ID, Inc. (NASDAQ: ... the filing of its 2016 Annual Report on Form 10-K on ... ... is available in the Investor Relations section of the Company,s website ... SEC,s website at http://www.sec.gov . 2016 Year Highlights: ...
(Date:4/11/2017)... N.Y. , April 11, 2017 ... fingerprints, but researchers at the New York University ... College of Engineering have found that partial similarities ... security systems used in mobile phones and other ... thought. The vulnerability lies in the ...
Breaking Biology News(10 mins):
(Date:9/25/2017)... and Portland, OR (PRWEB) , ... ... ... CallTower , an industry-leading Unified Communications (UC) and Collaboration company, and Bigleaf ... real-time, announced today a strategic alliance to extend CallTower’s Unified Communication applications ...
(Date:9/25/2017)... ... September 25, 2017 , ... Having met specific ... Design has been found to provide product development services that consistently ... our clients have a lot at stake when they invest in ...
(Date:9/25/2017)... ... September 25, 2017 , ... ... presenting multiple case studies, presentations and demonstrations at SCDM 2017, held September ... managers, medical review teams and CRO partners for more automated capabilities across ...
(Date:9/22/2017)... ... September 22, 2017 , ... ... raised nearly $200,000 via Kickstarter. The proceeds will be used to fund production ... B2v2, exceeding the original Kickstarter goal by nearly 1,000%. , The B2v2 is ...
Breaking Biology Technology: