Navigation Links
Nobel Laureate finds 'elegant' explanation for DNA transcribing enzyme's high fidelity

Last month, Roger Kornberg of Stanford University won the Nobel Prize in Chemistry for his efforts to unravel the molecular basis of eukaryotic transcription, in which enzymes give “voice?to DNA by copying it into the RNA molecules that serve as templates for protein in organisms from yeast to humans. Now, Kornberg and his colleagues report in the December 1, 2006 issue of the journal Cell, published by Cell Press, new structures that reveal another critical piece of the puzzle: how the so-called polymerase II enzyme discriminates among potential RNA building blocks to ensure the characteristic accuracy of the process.

The researchers found that a portion of the enzyme known as the trigger loop acts like a “trap door,?swinging beneath a matching nucleoside triphosphate (NTP) building block, to close off the active center and form an extensive network of interactions with the NTP and other parts of the enzyme. Those interactions leave another side chain in the trigger loop precisely positioned, such that it may literally “trigger?the formation of the chemical bonds that link components of the growing RNA chain together. If the NTP is even slightly misaligned, Kornberg said, those critical interactions fail.

The trigger loop mechanism therefore couples NTP recognition and catalysis, ensuring the fidelity of transcription, they reported.

“Of all revelations from the structure [of the transcription machinery] since it was first solved, this is perhaps the most fundamental since it gets at the underlying mechanisms,?Kornberg said. “It’s long known that the enzyme operates with high fidelity—selecting the correct base and sugar—but it’s been a mystery how that is accomplished.?

These findings offer “an unexpected and elegant explanation that’s both beautiful and simple, as nature invariably proves to be.?

The fundamental mechanism of transcription is conserved among cellular RNA polymerases, the researchers explained. Common featu res include an unwound region of about 15 base pairs of the DNA with some eight residues of the RNA transcript hybridized with the DNA in the center of the “transcription bubble.?The enzyme polymerases involved are capable of moving both forward and backward on the DNA. Forward movement is favored by the binding of NTPs, while backtracking occurs especially when the enzyme encounters an impediment, such as damaged DNA.

Kornberg’s group captured the first picture of the polymerase II transcribing complex by X-ray crystallography in 2001. Those structures revealed the complex with a nucleotide still in the enzyme’s addition site, just after it had been added to the RNA transcript.

Later X-ray structures revealed the transcribing complex with the addition site available for entry of a matched NTP. Those crystals uncovered a second NTP-binding site on the transcribing enzyme, dubbed the entry site. While all NTPs can bind the entry site, only an NTP matched for base-pairing with the DNA template binds the addition site for attachment to the growing RNA strand, Kornberg said.

Yet the question of how the enzyme achieves such a high degree of discrimination between matched and mismatched NTPs remained unanswered.

The chemical attraction alone between RNA bases—adenine, cytosine, guanine, and uracil—and their complementary bases on the DNA template strand is far from sufficient to account for the incredible selectivity of polymerase II, Kornberg said. And the scientists didn’t know either how the polymerase avoids substituting the NTPs that constitute DNA for the correct RNA building blocks, molecules that differ by only one oxygen atom.

In search of an explanation in the current study, the researchers screened hundreds of crystals to achieve higher data quality and resolution than ever before.

“In the course of the work, we saw something that had never been noticed before?additional protein density beneath the matching nucleotide,?Kornberg said.

The team traced that protein density back to a portion of the polymerase II enzyme: the trigger loop.

“Of the 14 crystal structures now reported in which the trigger loop was observed, only in two is it seen in that location, directly beneath the NTP,?Kornberg said. Those were the only two crystals in which the NTP was correctly matched to the DNA template, evidence of the trigger loop’s “clear relationship to NTP selection.?

Further study revealed that, when a matching NTP reaches the addition site, the trigger loop swings from its usual position some distance away until it rests parallel to the NTP. It then forms a network of interactions—some 20 to 30 in all—with components of the NTP, a process that serves to “recognize all features of the NTP in the addition site and detect its precise location,?the researchers reported.

“The specificity is a result of the alignment with the NTP that is critically dependent upon the base, sugar, phosphate and location when the trigger loop swings into position,?Kornberg said. “If it is misaligned even slightly, that set of contacts cannot occur.?

As a consequence of that alignment, to angstrom (a unit of length equal to one hundred millionth of a centimeter) precision, a histidine side chain of the trigger loop rests on the ß phosphate, the chemical constituent that must have its bond broken in order for the NTP to join the RNA chain through the formation of a phosphodiester bond, Kornberg said. The finding suggested the side chain acts as a trigger for bond formation.

The whole decision-making process occurs extremely rapidly, he added, on the order of picoseconds. A picosecond is one trillionth of a second.

“The basis for the extraordinary specificity with which RNA polymerases transcribe DNA lies in a structural element termed the trigger loop, which makes both direct and indirect contact with all features of the nucleotide in the polymer ase active center,?the researchers concluded.


'"/>

Source:Cell Press


Related biology news :

1. Papers of DNA Pioneer and Nobel Laureate Francis Crick Added to National Library of Medicine’s Profiles in Science Web Site
2. Nobelist discovers antidepressant protein in mouse brain
3. Comments, experts and background on the 2006 Nobel Prize in chemistry
4. New research says winning a Nobel Prize adds nearly 2 years to your lifespan
5. Current human embryonic stem cell lines contaminated UCSD/Salk team finds
6. Study finds more than one-third of human genome regulated by RNA
7. ASU researchers finds novel chemistry at work to provide parrots vibrant red colors
8. Same mutation aided evolution in many fish species, Stanford study finds
9. NC State scientist finds soft tissue in T. rex bones
10. Genrate: a generative model that finds and scores new genes and exons in genomic microarray data
11. Genetically modified rice in China benefits farmers health, study finds
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:6/15/2016)... 2016 Transparency Market Research ... Market by Application Market - Global Industry Analysis Size Share ... the report, the  global gesture recognition market  was ... is estimated to grow at a CAGR of ... Increasing application of gesture recognition technology ...
(Date:6/7/2016)... June 7, 2016  Syngrafii Inc. and San ... relationship that includes integrating Syngrafii,s patented LongPen™ eSignature ... This collaboration will result in greater convenience for ... union, while maintaining existing document workflow and compliance ... ...
(Date:6/2/2016)... 2016   The Weather Company , an IBM Business ... industry-first capability in which consumers will be able to interact ... questions via voice or text and receive relevant information about ... Marketers have long sought an advertising solution that can ... personal, relevant and valuable; and can scale across millions of ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... (PRWEB) , ... June 23, 2016 , ... ... the release of its second eBook, “Clinical Trials Patient Recruitment and Retention Tips.” ... and retention in this eBook by providing practical tips, tools, and strategies for ...
(Date:6/23/2016)... , June 23, 2016 /PRNewswire/ - FACIT has ... Ontario biotechnology company, Propellon Therapeutics Inc. ... and commercialization of a portfolio of first-in-class WDR5 ... targets such as WDR5 represent an exciting class ... in precision medicine for cancer patients. Substantial advances ...
(Date:6/23/2016)... ... June 23, 2016 , ... Charm Sciences, Inc. is ... has received AOAC Research Institute approval 061601. , “This is another AOAC-RI approval ... Bob Salter, Vice President of Regulatory and Industrial Affairs. “The Peel Plate methods ...
(Date:6/23/2016)... 2016   EpiBiome , a precision microbiome engineering ... debt financing from Silicon Valley Bank (SVB). The financing ... advance its drug development efforts, as well as purchase ... "SVB has been an incredible strategic partner to us ... bank would provide," said Dr. Aeron Tynes Hammack ...
Breaking Biology Technology: