Navigation Links
New way of tracking muscle damage from radiation

Magnetic resonance imaging (MRI) could become a valuable tool for predicting the risk of muscle injury during and following radiation therapy, according to investigators at St. Jude Children's Research Hospital.

The researchers report that MRI can spot the immediate injury done by radiation therapy to the muscles of children undergoing radiation treatment for certain types of soft-tissue cancer. This also indicates that MRI might one day be able to help doctors predict the amount of long-term damage that radiation may cause. A report on these findings appears in the Oct. 25 online issue of Magnetic Resonance Imaging.

The study's findings are significant because as radiation treatments become more advanced and complex, clinicians must have a way to predict the outcomes--including side effects--on specific patients, according to Matthew Krasin, M.D., associate member of the St. Jude Department of Radiological Sciences.

The St. Jude study showed that changes in images taken of muscles before and after radiation therapy for soft tissue sarcoma and Ewing sarcoma are related not only to the amount of radiation the child received, but also to the child's age and the presence of a nearby tumor.

"We hope that detecting these changes at such an early stage may help clinicians predict which patients need an intervention to prevent late damage," Krasin said. Soft tissue sarcomas are cancers that arise in muscles, fat, blood vessels and other soft tissues. Ewing sarcoma is a cancer that arises in the bone or soft tissue, usually in the arms, legs, pelvis or chest wall.

St. Jude researchers studied the muscles of 13 patients before, during and 12 weeks after they received radiation therapy for soft tissue sarcoma. The team used a technique called quantitative T2 to determine the extent of swelling in tissues before, during and after radiation therapy; and a technique called dynamic enhanced magnetic resonance imaging (DEMRI) to study what happens to the blood supply at a microscopic level.

"These techniques are powerful, non-surgical ways to look into the body and study the microscopic and biochemical changes that are occurring in each patient after radiation therapy," Krasin said.

The team made 60 images of the same area, including a dynamic view of what was happening in the muscles during a six-minute period following infusion of gadolinium, a contrast agent.

"The rate at which the contrast agent flows in and out of a region, or whether it leaks out of the blood vessel, helps us understand whether the blood supply is in poor or good condition," Krasin said. "Changes in T2 measurements may indicate an increase in swelling following radiation therapy, which is evidence of inflammation that could be treated."

The researchers believe that the early changes they see in muscle, such as swelling and leakage, might help them predict how much damage will occur in the muscles during the course of many months. By better understanding what causes these changes, clinicians will then be able to design better radiation treatments to avoid potential problems or treat the injury at an earlier stage, Krasin said.
'"/>

Source:St. Jude Children's Research Hospital


Related biology news :

1. Findings have implications for tracking disease, drugs at the molecular level
2. Radio-tracking associated with dramatic shift in water vole sex ratio
3. UQ researcher tracking key to healing the brain
4. Concern over fast tracking of new drugs
5. How satellite tracking revealed the migratory mysteries of endangered Atlantic loggerhead turtles
6. Heart repair gets new muscle
7. Small worm yields big clue on muscle receptor action
8. New complete muscle grown in the lab
9. Spiders help scientists discover how muscles relax
10. Cant serve an ace? Could be muscle fatigue
11. Lance Armstrong through a physiological lens: hard training boosts muscle power 8%

Post Your Comments:
*Name:
*Comment:
*Email:


(Date:1/21/2016)... , January 21, 2016 ... a new market research report "Emotion Detection and Recognition ... Software Tools (Facial Expression, Voice Recognition and Others), ... Global forecast to 2020", published by MarketsandMarkets, the ... to reach USD 22.65 Billion by 2020, at ...
(Date:1/20/2016)... MINNETONKA, Minn. , Jan. 20, 2016   ... that supports the entire spectrum of clinical research, is ... in 2015. MedNet,s significant achievements are the result of ... of) iMedNet eClinical , it,s comprehensive, ... --> --> Key MedNet growth ...
(Date:1/18/2016)... , Jan. 18, 2016  Extenua Inc., ... that simplifies the use and access of ubiquitous ... go-to-market partnership with American Cyber.  ... extensive experience leading transformational C4ISR and Cyber initiatives ... integrating the latest proven technology solutions," said ...
Breaking Biology News(10 mins):
(Date:2/10/2016)... Md. , Feb. 10, 2016  The Maryland ... Busch , has announced that University of Maryland School ... PhD, MBA and University of Maryland Medical System President ... of the "Speaker,s Medallion," the highest honor given to ... of Delegates. Dean Reece and Mr. ...
(Date:2/10/2016)... and New York, New York (PRWEB) , ... ... ... Regeneron Pharmaceuticals Inc. (NASDAQ: REGN) today announced that it has joined ... new vaccines and immunotherapies for infectious diseases and cancer. , The ...
(Date:2/10/2016)... 10, 2016  Matchbook, Inc., a company specializing ... biotech companies, announced today the appointment of ... Jim brings nearly 25 years of experience in ... spent nearly two decades in executive level roles ... at Genzyme and, most recently headed global logistics ...
(Date:2/10/2016)... ... February 10, 2016 , ... LATHAM, NEW YORK... Marktech Optoelectronics will ... conference in San Francisco’s Moscone Center from February 16-18, 2016, and at the ... These latest InGaAs PIN diode standard packages feature a TO-46 metal can with active ...
Breaking Biology Technology: