Navigation Links
New understanding of parasite cell structures may provide treatments for serious tropical diseases

Don't even think about trying to pronounce it. Although it is found in many organisms including humans, glycosylphosphatidylinositol has remained a mouthful for laymen and a puzzle for scientists. And yet GPIs, as science thankfully calls these cellular lipids, are important in numerous biological functions, including disease transmission.

Now, for the first time, cellular biologists at the University of Georgia have developed new tools to study and localize GPIs in living organisms and are discovering a new understanding of how they work in tropical parasites that cause human disease and suffering.

The research was published in the May 9 issue of The FEBS (Federation of European Biochemical Societies) Journal by Kojo Mensa-Wilmot, professor of cellular and molecular biology, and Sandesh Subramanya, a former doctoral student in the department of cellular biology at UGA.

While some GPIs are "attached" to proteins cells, other GPIs are "free," and it is these footloose cellular wanderers that interested Mensa-Wilmot. Until the UGA team developed new molecular tools to study free GPIs in living organisms, their function was unclear at best. Now, new avenues of study could open because of these molecular tools.

Although the term "lipid" is often substituted for "fat," these cell components actually have numerous functions. They are hydrocarbon-containing organic compounds that living cells must have to maintain structure and function. Glycolipids are attached to carbohydrates, and they are involved with cellular energy and also serve as markers for cellular recognition.

The researchers discovered a new function for these glycolipids--they are cleaved in response to cell stress caused by changes in osmotic pressure and relative acidity or alkalinity.

The research by the UGA team is especially important in better understanding the parasite Trypanosoma brucei, which causes human African trypanosomiasis, a disease that affects more than 66 million women, men and children in 36 countries of sub-Saharan Africa. The parasite is transmitted to humans through the bite of the tsetse fly, in which the trypanosome transfers from the mid-gut to the salivary glands where it enters the human bloodstream when the fly bites.

"We found that putting these cells under stress similar to that initially encountered by the trypanosome inside the fly caused the parasites to cleave free GPIs," said Mensa-Wilmot, "and that gives us important information about how the trypanosome cell functions."

The new tools aren't just helpful in understanding GPIs in T. brucei, either. The team found that it works just as well in understanding the parasite Leishmania, which causes another pervasive and terrible tropical disease called Leishmaniasis. This debilitating disease is found is more than 88 countries where a third of a billion people are at risk to contract it.

In the same set of experiments, the researchers discovered a new pathway for protein movement in the trypanosome that may also be found in other cell types including humans. The scientists discovered that proteins can move from a glycosome, an important energy-generating organelle in a trypanosome, to the endoplasmic reticulum where GPIs are made, in response to cell stress.

The human equivalent of a glycosome is a peroxisome, whose malfunction is associated with diseases such as Zellweger Syndrome. According to the National Institute of Neurological Disorders and Stroke, symptoms of this disorder at birth "may include lack of muscle tone and an inability to move. Other symptoms may include unusual facial characteristics, mental retardation, seizures and an inability to suck and/or swallow. Jaundice and gastrointestinal bleeding may also occur."

The new research will open areas for further investigation.

"Before this work in trypanosomes, there was no evidence that we could 'catch' peroxisome proteins moving to the ER" said Mensa-Wilmot. "With better understanding of the process we could begin looking for compounds that may act as drugs by blocking the parasite's ability to respond to extracellular stress."


Source:University of Georgia

Related biology news :

1. UCSB scientists probe sea floor venting to gain understanding of early life on Earth
2. Zebrafish may hold key to understanding human nerve cell development
3. Novel ultrafast laser detection of cancer cells also may improve understanding of stem cells
4. Researchers make gains in understanding antibiotic resistance
5. Brain-mapping technique aids understanding of sleep, wakefulness
6. New understanding of DNA repair may pave way to cancer treatments
7. NYU and MSKCC research provides model for understanding chemically induced cancer initiation
8. Virologists make major step towards understanding the process of HIV infection
9. New understanding of cell movement may yield ways to brake cancers spread
10. Proteomics brings researchers closer to understanding microbes that produce acid mine drainage
11. New understanding of jet lag
Post Your Comments:

(Date:5/12/2016)... , May 12, 2016 ... just published the overview results from the Q1 wave ... the recent wave was consumers, receptivity to a program ... data with a health insurance company. "We ... to share," says Michael LaColla , CEO of ...
(Date:4/28/2016)... -- First quarter 2016:   , Revenues ... first quarter of 2015 The gross margin was 49% ... and the operating margin was 40% (-13) Earnings per ... from operations was SEK 249.9 M (21.2) , Outlook ... 7,000-8,500 M. The operating margin for 2016 is estimated ...
(Date:4/15/2016)... -- A new partnership announced today will help life ... a fraction of the time it takes today, ... insurance policies to consumers without requiring inconvenient and ... rapid testing (A1C, Cotinine and HIV) and higi,s ... pulse, BMI, and activity data) available at local ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... 2016 On Wednesday, June 22, 2016, ... 0.22%; the Dow Jones Industrial Average edged 0.27% lower to ... down 0.17%. has initiated coverage on the following equities: ... (NASDAQ: NKTR ), Aralez Pharmaceuticals Inc. (NASDAQ: ... BIND ). Learn more about these stocks by accessing their ...
(Date:6/23/2016)... ... June 23, 2016 , ... Regulatory Compliance Associates® Inc. ... a free webinar on Performing Quality Investigations: Getting to Root Cause. ... at no charge. , Incomplete investigations are still a major concern to the ...
(Date:6/23/2016)... 22, 2016  Amgen (NASDAQ: AMGN ) ... QB3@953 life sciences incubator to accelerate the development ... laboratory space at QB3@953 was created to help high-potential ... for many early stage organizations - access to laboratory ... Amgen launched two "Amgen Golden Ticket" awards, providing each ...
(Date:6/22/2016)... 22, 2016 Cell Applications, Inc. and ... to produce up to one billion human induced ... one week. These high-quality, consistent stem cells enable ... and spend more time doing meaningful, relevant research. ... high-volume manufacturing process that produces affordable, reliable HiPSC ...
Breaking Biology Technology: