Navigation Links
New understanding of jet lag

A new study demonstrates that the brain's central timekeeper - the biological clock that regulates waking and sleeping cycles - has two parts that fall out of synchrony during light schedule shifts of six hours, the time it takes to fly across the Atlantic.

The finding may explain, at least in part, why transmeridian travelers suffer from jet lag, the malaise experienced after crossing several time zones. The new understanding could eventually lead to the development of medicines that would "reset" the biological clock so travelers could adjust much more quickly to rapid time zone changes. Most people require about two-and-a-half days to adjust to a six-hour flight from Europe to the United States, and even longer after an eastbound trans-Atlantic flight. The study also has implications for ways to treat shift workers - health care providers, factory employees, truck drivers, etc. - who encounter alertness problems, and those with sleep disorders.

A team of researchers at the University of Virginia and at Leiden University Medical Center in the Netherlands published their findings in the May 24 - June 6, 2005 issue of the journal Current Biology.

The investigators found that the dorsal and ventral sections of the suprachiasmatic nucleus (SCN), the brain's central timekeeper, adjust to shifts in light schedules at vastly different rates, potentially causing the difficult period of adjustment that most people experience after air travel across several time zones.

The researchers found that the ventral part of the SCN, which is directly connected by a nerve to the light-sensing retina, synchronizes rapidly with a new light schedule, even a radically shifted schedule. But the dorsal part of the clock requires several additional days to adjust. This results in complex signaling patterns that may adversely affect the functioning of tissues and organs throughout the body for a period of several days.

Importantly, the study identifies the neurotransmitter GABA (gamma-aminobutyric acid) as the link between the two clock parts that eventually pulls them back into synchronization, according to co-investigator Gene D. Block, professor of biology at the University of Virginia.

Block likens GABA to a weak rubber band linking pendulums swinging at different rates. If the "rubber band" could be made stronger, such as using a drug to enhance GABA, the ventral and dorsal parts of the central timekeeper could more quickly move back into harmony. The symptoms of jet lag would then be reduced or eliminated.

"The key here is, we now know what the 'rubber band' is: the neurotransmitter GABA that ultimately brings the clock back into synch," Block said. "This could lead to future therapies for jet lag. This is the first time that we have a mechanistic understanding of the systematic coupling of the different parts of the clock. We are now on our way to suggesting strategies for shifting the clock more quickly in response to unnatural light cycle changes."

Block said that future therapies, using this new knowledge, might also benefit shift workers and older people who suffer from sleep disorders.

In nature, day and night cycles shift slowly as the seasons change. The body is able to adjust to the slow changes and is in fact adapted to these seasonal cycles. But transmeridian flight is an unnatural manipulation of the light cycles, forcing the body to try to rapidly adjust to abrupt light cycle shifts. This sudden disruption in the normal pattern can compromise the normal function of organs. The result often is sleeplessness or sleepiness, reduced alertness, indigestion, fatigue and possibly ulcers.

"This new finding adds support to the emerging view that the central timekeeper, the SCN, is more complex than previously thought, and in fact adjusts to light cycle shifts at a different rate within its own structure," Block said. "Most importantly, the new research identifies t he mechanism that couples the two parts of the SCN clock."

He suggested that the differing rates of synchronization that occurs in the central clock may be part of a complex evolutionary adaptation to seasonal light changes, but the mechanism, in effect, becomes confused when confronted with unnatural and dramatic shifts in light schedules.

The research is part of a long-term international collaboration between the Center for Biological Timing at the University of Virginia and the Department of Neurophysiology at Leiden University Medical Center in the Netherlands. Block's co-authors at Leiden are Henk Albus, Mariska J. Vansteensel, Stephan Michel and Johanna H. Meijer.


'"/>

Source:University of Virginia


Related biology news :

1. UCSB scientists probe sea floor venting to gain understanding of early life on Earth
2. Zebrafish may hold key to understanding human nerve cell development
3. Novel ultrafast laser detection of cancer cells also may improve understanding of stem cells
4. Researchers make gains in understanding antibiotic resistance
5. Brain-mapping technique aids understanding of sleep, wakefulness
6. New understanding of DNA repair may pave way to cancer treatments
7. NYU and MSKCC research provides model for understanding chemically induced cancer initiation
8. Virologists make major step towards understanding the process of HIV infection
9. New understanding of cell movement may yield ways to brake cancers spread
10. Proteomics brings researchers closer to understanding microbes that produce acid mine drainage
11. NYU chemists use computer simulation to enhance understanding of DNA transcription
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:5/16/2017)... , May 16, 2017   Bridge Patient ... organizations, and MD EMR Systems , an ... partner for GE, have established a partnership to ... product and the GE Centricity™ products, including Centricity ... These new integrations will allow ...
(Date:4/17/2017)... NXT-ID, Inc. (NASDAQ: NXTD ) ("NXT-ID" ... its 2016 Annual Report on Form 10-K on Thursday April 13, ... ... the Investor Relations section of the Company,s website at http://www.nxt-id.com ... http://www.sec.gov . 2016 Year Highlights: ...
(Date:4/11/2017)... N.Y. , April 11, 2017 ... fingerprints, but researchers at the New York University ... College of Engineering have found that partial similarities ... security systems used in mobile phones and other ... thought. The vulnerability lies in the ...
Breaking Biology News(10 mins):
(Date:6/23/2017)... ... June 23, 2017 , ... The Academy ... and the University Aviation Association (UAA), the unifying voice for collegiate aviation education, ... will encourage teamwork, competition, and success through a STEM-based education platform. , Much ...
(Date:6/22/2017)... (PRWEB) , ... June 22, 2017 , ... ... health leaders in designating infertility as a disease, bringing new hope for prospective ... at their 2017 annual meeting to back the World Health Organization’s designation in ...
(Date:6/22/2017)... MA (PRWEB) , ... June 22, 2017 , ... Charm ... ILVO validation. The AMPH test was determined to be appropriate as a screening test ... visual interpretation, on the Charm EZ system, and the Charm EZ Lite system. These ...
(Date:6/20/2017)... ... 2017 , ... National executive search firm, Slone Partners, announces ... and biomarker expertise, as VP of Scientific Affairs at Cambridge Biomedical. , ... development and sample testing services. The organization acts as a leading provider of ...
Breaking Biology Technology: