Navigation Links
New study reveals structure of E. coli multidrug transporter protein

This new study could potentially help researchers find new ways to avoid the problem of multidrug resistance and enhance the potency of existing drug compounds.

The study is being published in ScienceXpress, an advance online edition of the journal Science, on May 5.

"The development of antibiotics to treat infectious disease is being seriously undermined by the emergence of drug-resistant bacteria," says Geoffrey A. Chang, Ph.D., a Scripps Research associate professor and a member of the Skaggs Institute for Chemical Biology, who led the study. "Multidrug resistance develops in part through the expulsion of drugs by integral membrane transporters like EmrD. Determining the structure of this transporter will add significantly to our general understanding of the mechanism of drug transport through the cell membrane and provide the structural basis for how these proteins go about selecting specific drugs to expel."

Multidrug resistant bacterial infections raise the cost of medical treatment and are far more expensive than treating normal infections. Treating drug-resistant tuberculosis, for example, requires so-called second-line drugs if standard treatment fails. According to the Centers for Disease Control, second-line drugs can cost as much as "$33,000 per patient in industrialized countries compared to $84 for first-line drugs." In addition, the centers noted, second-line drugs need to be taken for longer periods of time-from 18 to 36 months-and may require substantial patient monitoring, making these treatments difficult if not impossible to "be available in many of the resource-poor nations where drug-resistant tuberculosis is emerging."

EmrD belongs to the Major Facilitator Superfamily, a group of transporters among the most prevalent in microbial genomes. These transporters are distinctive in their ability to recognize and expel a highly diverse range of amphipathic compounds. Amphipathic molecules contain both hydrophobic and h ydrophilic groups-molecules that repel or are attracted to water, respectively.

The x-ray structure of the EmrD transporter-determined with data collected at the Stanford University Synchrotron Radiation Laboratory and the Advanced Light Source at the University of California, Berkeley-revealed an interior composed primarily of hydrophobic residues. This finding is consistent with its role of transporting hydrophobic or lipophilic molecules-and similar to the interior of another multidrug transporter, EmrE, which Chang and his colleagues uncovered in a study that was published last year in the journal Science.

This internal cavity is the "most notable difference" between EmrD and most non-Major Facilitator Superfamily multidrug transporters that, the new study noted, typically transport "a relatively narrow range of structurally related" compounds. The hydrophobic residues in the EmrD internal cavity are likely to contribute to the general mechanism transporting various compounds through the cell membrane, and may play "an important role in dictating a level of drug specificity" through a number of molecular interactions.

The study also suggests that EmrD intercepts and binds cyanide m-chlorophenyl hydrazone, a known efflux pump inhibitor, before it reaches the cell cytoplasm. This binding is likely facilitated by hydrophobic interactions within the internal cavity of EmrD. The researchers speculate that cyanide m-chlorophenyl hydrazone is either expelled from the bacterial cell or into the periplasmic space-the space between the outer membrane and the plasma membrane in gram-negative bacteria like E. coli.

"While EmrD and EmrE are completely different proteins from different molecular families," Chang said, "both are multidrug transporters that help bacteria develop multidrug resistance. Together with MsbA, another MDR structure that our laboratory is studying, this new x-ray structure adds another important view of some genera l structural features across multi-drug resistant transporter families."

Other authors of the study include Yong Yin, Xiao He, Paul Szewczyk, and That Nguyen of The Scripps Research Institute.


'"/>

Source:Scripps Research Institute


Related biology news :

1. Bioartificial kidney under study at MCG
2. W.M. Keck Foundation funds study of friendly microbes
3. Yellowstone microbes fueled by hydrogen, according to U. of Colorado study
4. Genome-wide mouse study yields link to human leukemia
5. Clam embryo study shows pollutant mixture adversely affects nerve cell development
6. New imaging method gives early indication if brain cancer therapy is effective, U-M study shows
7. Same mutation aided evolution in many fish species, Stanford study finds
8. Sequencing of marine bacterium will help study of cell communication
9. Genetically modified rice in China benefits farmers health, study finds
10. A new study examines how shared pathogens affect host populations
11. NYU study reveals how brains immune system fights viral encephalitis
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:11/30/2016)... Nov. 30, 2016  higi SH llc (higi) ... initiative targeting national brands, industry thought-leaders and celebrity ... respective audiences for taking steps to live healthier, ... in 2012, higi has built the largest self-screening ... 38 million people who have conducted over 185 ...
(Date:11/29/2016)... 29, 2016 Nearly one billion matches per second ... ... DERMALOG is Germany's ... efficient Identity Management. (PRNewsFoto/DERMALOG Identification Systems) ... DERMALOG is Germany's largest Multi-Biometric supplier: The company's Fingerprint Identification ...
(Date:11/22/2016)... , November 22, 2016 According to the ... IRIS, Palm Print, Face, Vein, Signature, Voice), Multi-Factor), Component (Hardware and Software), ... published by MarketsandMarkets, the market is expected to grow from USD 10.74 ... CAGR of 16.79% between 2016 and 2022. ... ...
Breaking Biology News(10 mins):
(Date:12/2/2016)... Diego, CA (PRWEB) , ... December 01, 2016 , ... ... data from its Phase I/II clinical trials for AC0010 at the World Conference on ... forward to providing an update on the phase I/II clinical trials for AC0010 in ...
(Date:12/2/2016)... ... 01, 2016 , ... The Conference Forum has announced that the 3rd annual ... place on February 1-3, 2017 at the Roosevelt Hotel in New York City. Led ... a unique 360-degree approach, which addresses the most up-to-date information regarding business aspects, clinical ...
(Date:12/2/2016)... ... December 02, 2016 , ... Robots will storm the Prudential ... December 3rd, 2016. The event, which is held on the United Nations International Day ... with Disabilities back into the workplace. Suitable Technologies is partnering with NTI to showcase ...
(Date:11/30/2016)... ... November 30, 2016 , ... BEI Kimco, a brand of ... flexure design that ensures high alignment accuracy by preventing unwanted shaft rotation. The ... where extreme precision is required, such as in medical equipment, laboratory instrumentation, clean ...
Breaking Biology Technology: