Navigation Links
New sensor detects gaseous chemical weapon surrogates in 45 seconds

Using lasers and tuning forks, researchers at Pacific Northwest National Laboratory have developed a chemical weapon agent sensing technique that promises to meet or exceed current and emerging defense and homeland security chemical detection requirements. The technique, called Quartz Laser Photo-Acoustic Sensing, or "QPAS," is now ready for prototyping and field testing.

PNNL, a Department of Energy national laboratory, has demonstrated QPAS's ability to detect gaseous nerve agent surrogates. In one test, researchers used diisopropyl methyl phosphonate (DIMP), which is a chemical compound that's similar to sarin. QPAS detected DIMP at the sub-part-per-billion level in less than one minute. The miniscule level is similar to letting one drop of liquid DIMP evaporate into a volume of air that would fill more than two Olympic-size swimming pools.

"QPAS is an extremely sensitive and selective chemical detection technique that can be miniaturized and yet is still practical to operate in field environments," said Michael Wojcik, a research scientist at PNNL. "The laser, tuning fork and other technology needed for QPAS are so simple, and yet robust, that further development is a low-risk investment, and we're eager to take it to the next level."

The instrument is based on Laser Photo-Acoustic Sensing, or LPAS, and infrared Quantum Cascade Lasers, or QCLs. LPAS is an exquisitely sensitive form of optical absorption spectroscopy, where a pulsed laser beam creates a brief absorption in a sample gas, which in turn creates a very small acoustic signal. A miniature quartz tuning fork acts as a "microphone" to record the resulting sound wave.

PNNL researchers paired multiple QCLs with the tuning forks, allowing simultaneous examination of a single sample at many infrared wavelengths. Nearly every molecule has unique optical properties at infrared wavelengths between three and 12 micrometers, and QCLs provide access to any wavelength in this region.

"Because of this access and the fact that QPAS is almost immune to acoustic interference, we have potential for extraordinary chemical sensitivity and selectivity," Wojcik said.

QPAS's small components represent a major advance over previous LPAS measurement methods. Historically, LPAS instruments were physically large, often measuring a meter or more in length. The entire arrangement was cumbersome, power-hungry and prone to interference from external sound and vibration.

In the QPAS technique, several QCLs can fit on a 3 x 3 millimeter chip. And the tuning forks are identical to the kind used in wristwatches, measuring only 4 millimeters long, 2 millimeters wide and 0.3 millimeter thick. A conceptual design for a battery-operated, prototype QPAS sensor, which includes 10 pairs of QCLs and tuning forks, would fit into a briefcase that is 12 inches long, 12 inches wide and 6 inches high ?and the entire thing would weigh less than 15 pounds. In addition, the instrument can operate unattended for long periods of time.

QPAS is currently at Technology Readiness Level "five," meaning that while the technical components exist and initial testing is complete, the system still must be converted to a prototype.


'"/>

Source:DOE/Pacific Northwest National Laboratory


Related biology news :

1. Study shows nanoshells ideal as chemical nanosensors
2. Polymers with copper show promise for implanted sensors
3. Bad aftertaste? New sensory on/off switch may cure bane of artificial sweetener search
4. Aptamer-based Biosensor screens Air Force personnel and equipment
5. Grasshopper love songs give insight into sensory tuning
6. Have a taste for fat? Yes! A sensor in the mouth promotes preference for fatty foods
7. New nanosensor uses quantum dots to detect DNA
8. Portable cocaine sensor developed at UC Santa Barbara
9. A biosensor layered like lasagna
10. Rochester scientists develop fast-working biosensor
11. Chemical signaling helps regulate sensory map formation in the brain
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:3/14/2016)... http://www.apimages.com ) - ... - Renvoi : image disponible via AP Images ( ... --> DERMALOG, le leader de l,innovation ... d,empreintes digitales pour l,enregistrement des réfugiés en Allemagne. ... produire des cartes d,identité aux réfugiés. DERMALOG dévoilera ...
(Date:3/10/2016)... Pa. , March 10, 2016   Unisys Corporation ... Customs and Border Protection (CBP) is testing its biometric ... San Diego to help identify certain non-U.S. ... . The test, designed to help determine the efficiency ... environment, began in February and will run until May 2016. ...
(Date:3/8/2016)... 8, 2016   Valencell , the leading ... it has secured $11M in Series D financing. ... new venture fund being launched by UAE-based financial ... existing investors TDF Ventures and WSJ Joshua Fund. ... its triple-digit growth and accelerate its pioneering innovation ...
Breaking Biology News(10 mins):
(Date:5/17/2016)... ... May 17, 2016 , ... DryLet, ... reduction applications, announced today it will be showcasing ManureMagic™ at booth V1061 at ... featured in the Wall Street Journal last year and more recently made news ...
(Date:5/17/2016)... ... May 17, 2016 , ... PATH ... they will collaborate to bring a feeding cup to market based on a ... the Craniofacial Center at Seattle Children’s Hospital, thereby ensuring an innovative feeding option ...
(Date:5/17/2016)... Strekin AG, a start-up ... Switzerland announced today the in-licensing of ... protein kinase.      (Logo: http://photos.prnewswire.com/prnh/20160513/367502LOGO ... the necessary research foundation for the clinical development ... play fundamental roles. Pamapimod has a well-established safety ...
(Date:5/17/2016)... ... 17, 2016 , ... Yukon Medical, a leading developer of ... and Company) to receive its Global Product Innovation Supplier of the Year Award. ... contributions to advancing or supporting key BD initiatives, products, processes, and customer satisfaction. ...
Breaking Biology Technology: