Navigation Links
New sensor detects gaseous chemical weapon surrogates in 45 seconds

Using lasers and tuning forks, researchers at Pacific Northwest National Laboratory have developed a chemical weapon agent sensing technique that promises to meet or exceed current and emerging defense and homeland security chemical detection requirements. The technique, called Quartz Laser Photo-Acoustic Sensing, or "QPAS," is now ready for prototyping and field testing.

PNNL, a Department of Energy national laboratory, has demonstrated QPAS's ability to detect gaseous nerve agent surrogates. In one test, researchers used diisopropyl methyl phosphonate (DIMP), which is a chemical compound that's similar to sarin. QPAS detected DIMP at the sub-part-per-billion level in less than one minute. The miniscule level is similar to letting one drop of liquid DIMP evaporate into a volume of air that would fill more than two Olympic-size swimming pools.

"QPAS is an extremely sensitive and selective chemical detection technique that can be miniaturized and yet is still practical to operate in field environments," said Michael Wojcik, a research scientist at PNNL. "The laser, tuning fork and other technology needed for QPAS are so simple, and yet robust, that further development is a low-risk investment, and we're eager to take it to the next level."

The instrument is based on Laser Photo-Acoustic Sensing, or LPAS, and infrared Quantum Cascade Lasers, or QCLs. LPAS is an exquisitely sensitive form of optical absorption spectroscopy, where a pulsed laser beam creates a brief absorption in a sample gas, which in turn creates a very small acoustic signal. A miniature quartz tuning fork acts as a "microphone" to record the resulting sound wave.

PNNL researchers paired multiple QCLs with the tuning forks, allowing simultaneous examination of a single sample at many infrared wavelengths. Nearly every molecule has unique optical properties at infrared wavelengths between three and 12 micrometers, and QCLs provide access to any wavelength in this region.

"Because of this access and the fact that QPAS is almost immune to acoustic interference, we have potential for extraordinary chemical sensitivity and selectivity," Wojcik said.

QPAS's small components represent a major advance over previous LPAS measurement methods. Historically, LPAS instruments were physically large, often measuring a meter or more in length. The entire arrangement was cumbersome, power-hungry and prone to interference from external sound and vibration.

In the QPAS technique, several QCLs can fit on a 3 x 3 millimeter chip. And the tuning forks are identical to the kind used in wristwatches, measuring only 4 millimeters long, 2 millimeters wide and 0.3 millimeter thick. A conceptual design for a battery-operated, prototype QPAS sensor, which includes 10 pairs of QCLs and tuning forks, would fit into a briefcase that is 12 inches long, 12 inches wide and 6 inches high ?and the entire thing would weigh less than 15 pounds. In addition, the instrument can operate unattended for long periods of time.

QPAS is currently at Technology Readiness Level "five," meaning that while the technical components exist and initial testing is complete, the system still must be converted to a prototype.


'"/>

Source:DOE/Pacific Northwest National Laboratory


Related biology news :

1. Study shows nanoshells ideal as chemical nanosensors
2. Polymers with copper show promise for implanted sensors
3. Bad aftertaste? New sensory on/off switch may cure bane of artificial sweetener search
4. Aptamer-based Biosensor screens Air Force personnel and equipment
5. Grasshopper love songs give insight into sensory tuning
6. Have a taste for fat? Yes! A sensor in the mouth promotes preference for fatty foods
7. New nanosensor uses quantum dots to detect DNA
8. Portable cocaine sensor developed at UC Santa Barbara
9. A biosensor layered like lasagna
10. Rochester scientists develop fast-working biosensor
11. Chemical signaling helps regulate sensory map formation in the brain
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:1/13/2016)... --> --> ... report titled - Biometric Sensors Market - Global Industry Analysis, ... to the report, the global biometric sensors market was valued at ... US$1,625.8 mn by 2023, expanding at a CAGR of ... the biometric sensors market is expected to reach 1,799.6 ...
(Date:1/11/2016)... , Jan. 11, 2016  higi, the ... nearly 10,000 retail locations, web and mobile, today ... $40 million from existing investors. ... be devoted to further innovate higi,s health platform ... and web portal – including expanding services and ...
(Date:1/7/2016)... NEW YORK , Jan. 7, 2016 ... as regional markets for biometric technologies and devices, identifying ... application market for various types of biometric devices. Includes ... report to: Identify newer markets and explore the ... of biometric devices. Examine each type of biometric technology, ...
Breaking Biology News(10 mins):
(Date:2/10/2016)... ... 2016 , ... LATHAM, NEW YORK... Marktech Optoelectronics will feature their ... in San Francisco’s Moscone Center from February 16-18, 2016, and at the healthcare-focused BiOS ... InGaAs PIN diode standard packages feature a TO-46 metal can with active areas of ...
(Date:2/10/2016)... ... February 10, 2016 , ... ... research registry built on the secure online PatientCrossroads platform, has exceeded both its ... participants have joined the PROMPT study, which seeks to advance understanding of the ...
(Date:2/10/2016)... ... February 10, 2016 , ... Global Stem Cells ... with Singapore-based Global Stem Cells Network (GSCN) and its affiliate Global Medical ... the latest adipose and bone marrow therapies. , Through the new collaboration, ...
(Date:2/10/2016)... ... February 09, 2016 , ... Creation ... winner of the Highest Overall Customer Rating Award from Circuits Assembly , today ... units across the USA, Canada, Mexico and China. , The EMS provider, known ...
Breaking Biology Technology: