Navigation Links
New polysaccharide may help combat multidrug resistance in cancer

In a recent study published in the Journal of Biological Chemistry, scientists report that a molecule previously thought to play a purely structural and inert role in cells is actually involved in multidrug resistance in cancer. Using antagonists for this molecule, the researchers were able to sensitize drug resistant breast cancer cells to chemotherapeutic drug treatment.

The research appears as the "Paper of the Week" in the May 27 issue of the Journal of Biological Chemistry, an American Society for Biochemistry and Molecular Biology journal.

Multidrug resistance is very common in most types of cancers, making it one of the leading problems in cancer therapy. It is often caused by an increase in the cell's production of proteins that transport drugs out of the cell, preventing the drugs from combating cancer.

Previously, Dr. Bryan P. Toole and his coworkers, Drs. Suniti Misra and Shibnath Ghatak, of the Medical University of South Carolina noticed that small pieces, or oligomers, of a polysaccharide called hyaluronan were able to sensitize drug-resistant breast cancer cells to several different chemotherapeutic drugs. He believed that the polysaccharide oligomers were binding to a receptor for hyaluronan (called CD44) and preventing it from initiating a signaling cascade that would result in drug resistance.

"It is very surprising that hyaluronan is involved in drug resistance," admits Dr. Toole. "Most scientists think of hyaluronan as a structural and inert molecule. In adult tissues it plays two roles. First, it assists in tissue hydration and in biophysical properties such as resilience. Second, it forms a template to which matrix proteins attach and form important extracellular structural complexes."

Hyaluronan also accumulates around the outside of cells during disease processes such as early atherogenesis, persistent inflammation, and cancer. In recent years, however, hyaluronan has also been shown to induce signaling pathways in inflammatory, embryonic and cancer cells.

In their current Journal of Biological Chemistry paper, Dr. Toole and his colleagues report on further studies which indicate that hyaluronan increases the cellular production of a multidrug transporter protein by binding to CD44. They discovered that antagonist molecules that bind to hyaluronan and prevent it from interacting with CD44 were able to sensitize multidrug resistant breast cancer cells to chemotherapeutic drugs. The researchers also found that increasing hyaluronan synthesis in cells increased resistance to drug treatment.

"Our work indicates that hyaluronan antagonists, for example small hyaluronan oligomers, reverse the malignant properties of cancer cells, including proliferation, invasiveness, and drug resistance," explains Dr. Toole. "Hyaluronan oligomers are non-toxic, non-immunogenic, and readily applicable to several proliferative disease processes, especially cancer. We are hoping that hyaluronan antagonists can be used in conjunction with chemotherapy such that much lower and less toxic doses of chemotherapeutic agents can be used."


'"/>

Source:American Society for Biochemistry and Molecular Biology


Related biology news :

1. Molecular machine may lead to new drugs to combat human diseases
2. A bacterial genome reveals new targets to combat infectious disease
3. Light therapy may combat fungal infections, new evidence suggests
4. AIDS expert says global strategy needed to combat feminization of HIV/AIDS
5. Researcher at UGA College of Veterinary Medicine identifies new way of combating viral diseases
6. Storing carbon to combat global warming may cause other environmental problems, study suggests
7. New U. of Colorado at Boulder flu chip may help combat future epidemics, pandemics
8. Asleep in the deep: Model helps assess ocean-injection strategy for combating greenhouse effect
9. Pair of studies offer new clues to combat antibiotic resistance
10. Team discovers possible universal strategy to combat addiction
11. Retinol for combating leukemia cells
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:6/1/2016)... 2016 Favorable Government Initiatives Coupled ... Criminal Identification to Boost Global Biometrics System Market Through ... Research report, " Global Biometrics Market By Type, ... Opportunities, 2011 - 2021", the global biometrics market is ... account of growing security concerns across various end use ...
(Date:5/9/2016)... Elevay is currently known as ... for high net worth professionals seeking travel for work ... world, there is still no substitute for a face-to-face ... your deal with a firm handshake. This is why ... of citizenship via investment programs like those offered by ...
(Date:4/26/2016)... DUBLIN , April 27, 2016 ... of the  "Global Multi-modal Biometrics Market 2016-2020"  report ... ) , The analysts forecast ... a CAGR of 15.49% during the period 2016-2020.  ... a number of sectors such as the healthcare, ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... , June 23, 2016 On ... session at 4,833.32, down 0.22%; the Dow Jones Industrial Average ... 500 closed at 2,085.45, down 0.17%. Stock-Callers.com has initiated coverage ... INFI ), Nektar Therapeutics (NASDAQ: NKTR ), Aralez ... Inc. (NASDAQ: BIND ). Learn more about these ...
(Date:6/23/2016)... ... June 23, 2016 , ... ... and technical consulting, provides a free webinar on Performing Quality Investigations: ... 2016 at 12pm CT at no charge. , Incomplete investigations are still a ...
(Date:6/23/2016)... 2016  Amgen (NASDAQ: AMGN ) today ... life sciences incubator to accelerate the development of ... space at QB3@953 was created to help high-potential life ... many early stage organizations - access to laboratory infrastructure. ... launched two "Amgen Golden Ticket" awards, providing each winner ...
(Date:6/22/2016)... , June 22, 2016 Cell Applications, ... allow them to produce up to one billion ... lot within one week. These high-quality, consistent stem ... preparing cells and spend more time doing meaningful, ... a proprietary, high-volume manufacturing process that produces affordable, ...
Breaking Biology Technology: