Navigation Links
New method shows it is possible to grow bone for grafts within a patient's body

An international team of biomedical engineers has demonstrated for the first time that it is possible to grow healthy new bone reliably in one part of the body and use it to repair damaged bone at a different location.

The research, which is based on a dramatic departure from the current practice in tissue engineering, is described in a paper titled "In vivo engineering of organs: The bone bioreactor" published online next week by the Proceedings of the National Academy of Science.

"We have shown that we can grow predictable volumes of bone on demand," says V. Prasad Shastri, assistant professor of biomedical engineering at Vanderbilt University who led the effort. "And we did so by persuading the body to do what it already knows how to do."

"This research has important implications not only for engineering bone, but for engineering tissues of any kind," adds co-author Robert S. Langer, Institute Professor at the Massachusetts Institute of Technology and a pioneer in the field of tissue engineering. "It has the potential for changing the way that tissue engineering is done in the future."

The current approach currently used by orthopedic surgeons to repair serious bone breaks is to remove small pieces of bone from a patient's rib or hip and fuse them to the broken bone. They use the same method to fuse spinal vertebrae to treat serious spinal injuries and back pain. Although this works well at the repair site, the removal operation is extremely painful and can produce serious complications. If the new method is confirmed in clinical studies, it will become possible to grow new bone for all types of repairs instead of removing it from existing bones. For people with serious bone disease, it may even be possible to grown replacement bone at an early stage and freeze it so it can be used when it is needed, says Prasad.

Despite the fact that living bone is continually growing and reshaping, the numerous attempts to coax it to grow bone outside of the body--in vitro--have all failed. Recent attempts to stimulate bone growth within the body--in vivo--have had limited success but have proven to be extremely complex, expensive and unreliable.

Shastri's and his colleagues took a new approach that has proven to be surprisingly simple. They decided to take advantage of the body's natural wound-healing response and create a special zone on the surface of a healthy bone in hopes that the body would respond by filling the space with new bone. The approach lived up to their highest expectations. Working with mature rabbits, a species with bones that are very similar to those of humans, the researchers were delighted to find that this zone, which they have dubbed the "in vivo bioreactor," filled healthy bone in about six weeks. And it did so without having to coax the bone to grow by applying the growth factors required by previous in vivo efforts. Furthermore, they found that the new bone can be detached easily before it fuses with the old bone, leaving the old bone scarred but intact.

"The new bone actually has comparable strength and mechanical properties to native bone," says Molly Stevens, currently a reader at Imperial College in the United Kingdom who did most of the research as a post-doctoral fellow at MIT, "and since the harvested bone is fresh it integrates really well at a recipient site."

Long bones in the body are covered by a thin outer layer called the periosteum. The layer is a little like scotch tape: the outside is tough and fibrous but the inside is covered with a layer of special pluripotent cells which, like marrow cells, are capable of transforming into the different types of skeletal tissue. So Shastri and his collaborators decided to create the bioreactor space just under this outer layer.

They created the space by making a tiny hole in the periosteum and injecting saline water underneath. This loosened the layer from the underlying bone and inflat ed it slightly. When they had created a cavity the size and shape that they wanted, the researchers, Next, they removed the water and replaced it with a gel that is commercially available and approved by the FDA for delivery of cells within the human body. They chose the material because it contained calcium, a known trigger for bone growth. Their major concern was that the bioreactor would fill with scar tissue instead of bone, but that didn't happen. Instead, it filled with bone that is indistinguishable from the original bone.

The scientists intend to proceed with the large animal studies and clinical trials necessary to determine if the procedure will work in humans and, if it does, to get it approved for human treatment. At the same time, they hope to test the approach with the liver and pancreas, which have outer layers similar to the periosteum.


Source:Vanderbilt University

Related biology news :

1. Color-blind method opens new doors in DNA sequencing
2. New imaging method gives early indication if brain cancer therapy is effective, U-M study shows
3. Studies reveal methods viruses use to sidestep immune system
4. An entropy-based gene selection method for cancer classification using microarray data
5. New methods of gene delivery using lasers
6. Breakthrough method in nanoparticle synthesis paves the way for new pharmaceutical and biomedical applications
7. Shift of weather patterns necessitates rethinking of reforestation methods
8. Scientists use manufacturing methods to reconstruct mastodon
9. Researchers develop promising new gene network analysis method
10. Researchers develop new method for facile identification of proteins in bacterial cells
11. A novel method to measure circadian cycles
Post Your Comments:

(Date:11/17/2015)... -- Vigilant Solutions announces today that Mr. Dick W. ... --> --> Mr. Boyce ... at TPG Capital, one of the largest global investment ... revenue.  He founded and led TPG,s Operating Group, which ... 1997 to 2013.  In his first role, he served ...
(Date:11/12/2015)... -- A golden retriever that stayed healthy despite having the ... a new lead for treating this muscle-wasting disorder, report ... MIT and Harvard and the University of São Paolo ... Cell, pinpoints a protective gene that boosts muscle ... Boston Children,s lab of Lou Kunkel , PhD, ...
(Date:11/11/2015)... Minn. , Nov. 11, 2015   MedNet Solutions ... entire spectrum of clinical research, is pleased to announce that ... in Clinical Trials (PCT) event, to be held November ... be able to view live demonstrations of iMedNet ... and learn how iMedNet has been able to ...
Breaking Biology News(10 mins):
(Date:11/25/2015)... Nov. 25, 2015 /PRNewswire/ - Aeterna Zentaris Inc. (NASDAQ: ... business and prospects remain fundamentally strong and highlights ... doxorubicin) recently received DSMB recommendation to continue the ... review of the final interim efficacy and safety ... Endpoint in men with heavily pretreated castration- and ...
(Date:11/25/2015)... PORTLAND, Oregon , November 25, 2015 /PRNewswire/ ... Deep Market Research Report is a professional and ... Genomics industry.      (Logo: ... basic overview of the industry including definitions, classifications, ... analysis is provided for the international markets including ...
(Date:11/24/2015)... ... , ... The United States Golf Association (USGA) today announced Dr. Bruce Clarke, ... annually since 1961, the USGA Green Section Award recognizes an individual’s distinguished service to ... Clarke, of Iselin, N.J., is an extension specialist of turfgrass pathology in the department ...
(Date:11/24/2015)... /CNW/ - iCo Therapeutics ("iCo" or "the Company") (TSX-V: ... the quarter ended September 30, 2015. Amounts, unless ... presented under International Financial Reporting Standards ("IFRS"). ... Andrew Rae , President & CEO of ... only value enriching for this clinical program, but ...
Breaking Biology Technology: