Navigation Links
New mechanism for nutrient uptake discovered

Biologists at the Carnegie Institution's Department of Plant Biology have discovered a new way that plant cells govern nutrient regulation—neighboring pore-like structures at the cell's surface physically interact to control the uptake of a vital nutrient, nitrogen. It is the first time scientists have found that the interaction of neighboring molecules is essential to this regulation. Since plants, animals, bacteria, and fungi all share similar genes for this activity, the scientists believe that the same feature could occur across species. The discovery, published in the February 11th on-line edition of Nature, has widespread potential—from understanding human diseases, such as kidney function, to engineering better crops.

"Every cell in every organism has a system for bringing in nutrition and expelling waste," explained lead author Dominique Loqué. "Some are through pore-like protein structures called transporters, which reside at the surface of the cell's outer membrane. Each pore is capable of transporting nutrients individually, so we were really surprised to find that the pores simply can't act without stimulation from their neighbors."

In earlier research the Carnegie scientists, with colleagues, identified the genes responsible for initiating nitrogen uptake in plants. That identification has helped other researchers find the relatives of these genes in a variety of species from bacteria to humans. In this study, the scientists wanted to identify how ammonium transport is regulated.

Plants import nitrogen in the form of ammonium from the soil. The researchers found that the end portion, or so-called C-terminus, of the protein Arabidopsis ammonium transporter AtAMT1;1, located at the surface of the cell membrane, acts as a switch.

"The terminus is an arm-like feature that physically grabs a neighboring short-chain molecule, binds with it, and changes the shape of itself and its neighbor thereby activating all the pores i n the complex," continued Loqué. "The pores can't function without this physical stimulation."

"The rapid chain-reaction among the different pores allows the system to shut down extremely fast and can even memorize previous exposures," noted co-author Wolf Frommer. "Imagine a large animal marking its territory. A sudden flow of ammonia could be toxic to the plant. If it weren't for a rapid-fire shutdown plants could die. The conservation of this feature in the related transporters in bacteria, fungi, plants, and animals suggests that an ancient organism, which was a precursor to all known organisms on Earth, had developed this feature because there was much more ammonia on the early Earth. The ubiquitous presence of this structure in all of the known ammonium transporters suggests that the regulation is still necessary today for all of these organisms—cyanobacteria in the ocean, fungi that grow on grapes and make our wine, plants that provide our food—and even in our kidneys, which excrete nitrogen. We also suspect other different types of transporters will be discovered to work in this way."

The scientists don't yet know what triggers the rapid shut-off. They think it might be a very common regulatory event called phosphorylation, where a phosphate molecule is introduced to another molecule, changing the latter, and preparing it for a chemical reaction. They have found a site for phosphorylation and are looking at this possibility further.

A leading expert in transporters, Professor Dale Sanders, head of the biology department at the University of York in the U.K. commenting on the work said: "Loqué, Frommer and co-workers have demonstrated very beautifully how plant ammonium transporters are controlled. A switch domain in the protein facilitates rapid and sensitive control of ammonium transport to preclude over-accumulation of an ion that is beneficial at low concentrations, but potentially toxic at high concentrations. This is a ma jor advance in the field of plant mineral nutrition."


'"/>

Source:Carnegie Institution


Related biology news :

1. A new mechanism of regulating RNA degradation
2. Plants, animals share molecular growth mechanisms
3. PET/MRI scans may help unravel mechanisms of prenatal drug damage
4. Researchers discover molecular mechanism that desensitizes us to cold
5. Chemists identify immune system mechanism for methamphetamine binges
6. Key mechanism in genetic inheritance during cell division identified
7. Researchers unlock mechanism creating jigsaw puzzle-like plant cells
8. Mouse gene shows new mechanism behind cardiac infarction in man
9. UCSD research reveals mechanism involved with type of fatal epilepsy
10. Ancient immune defense mechanism is no match for HIV-1
11. Malaria mechanism revealed
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:4/3/2017)... April 3, 2017  Data captured by ... platform, detected a statistically significant association between ... to treatment and objective response of cancer ... to predict whether cancer patients will respond ... as well as to improve both pre-infusion potency ...
(Date:3/29/2017)...  higi, the health IT company that operates the ... , today announced a Series B investment from ... The new investment and acquisition accelerates higi,s strategy to ... population health activities through the collection and workflow integration ... collects and secures data today on behalf of over ...
(Date:3/24/2017)... Research and Markets has announced the addition ... Trends - Industry Forecast to 2025" report to their offering. ... The Global Biometric ... of around 15.1% over the next decade to reach approximately $1,580 ... market estimates and forecasts for all the given segments on global ...
Breaking Biology News(10 mins):
(Date:10/9/2017)... DIEGO , Oct. 9, 2017  BioTech ... biological mechanism by which its ProCell stem cell ... critical limb ischemia.  The Company, demonstrated that treatment ... amount of limbs saved as compared to standard ... the molecule HGF resulted in reduction of therapeutic ...
(Date:10/9/2017)... ... October 09, 2017 , ... ... line of medical marijuana products targeting the needs of consumers who are incorporating ... Kindred takes place in Phoenix, Arizona. , As operators of two successful Valley ...
(Date:10/7/2017)... ... October 06, 2017 , ... ... Hi-C-based genomic technologies, launched its ProxiMeta™ Hi-C metagenome deconvolution product, featuring the ... and accompanying cloud-based bioinformatics software to perform Hi-C metagenome deconvolution using their ...
(Date:10/6/2017)... ... October 06, 2017 , ... On ... and webinar on INSIGhT, the first-ever adaptive clinical trial for glioblastoma (GBM). The ... The event is free and open to the public, but registration is required. ...
Breaking Biology Technology: