Navigation Links
New insights into how Huntington's disease attacks the brain

Scientific theory holds that Huntington's disease (HD) is caused by a mutant protein that arises within brain cells and kills them, triggering the genetic neurological disorder. Now a new UCLA Neuropsychiatric Institute study reveals the first strong evidence that the mutant protein also elicits toxic interactions from neighboring cells to provoke the fatal brain disorder. The May 5 edition of Neuron reports the findings.

"This is really important because most current disease models and drug development efforts rely on the assumption that Huntington's disease arises from within the target brain cells," explained Dr. William Yang, assistant professor at the UCLA Neuropsychiatric Institute and a member of the Brain Research Institute.

"Our model is the first to show that mutant HD proteins exert their influence on brain cells located near the target cells," he said. "These neighboring cells then interact with the target cells to spark disease."

To pinpoint the disorder's cellular origin, UCLA researchers developed two sets of mice with the human HD gene mutation. The first group was engineered to trigger production of the mutant HD protein throughout the brain. The second set of mice produced the mutant HD protein only in the target brain cells.

The scientists reasoned that if the mutant protein triggered the disease only from within the target cells, the second set of mice would display significant signs of the disorder. If HD required toxic interactions among cells throughout the brain, however, these same mice would show little or no signs of the disorder.

When comparing the two groups, the UCLA team discovered that the first set of mice demonstrated problems with motor control and showed visible degeneration of the target brain cells. In contrast, the second set of mice showed little signs of the disease.

"This is the first direct genetic evidence to demonstrate that abnormal interactions between cells can significant ly contribute to brain cell death in a living mouse model of Huntington's disease," said Yang.

Yang's team is now trying to pinpoint which of the neighboring cells generate Huntington's disease.

"Our next step will be determining how neighboring cells influence target cells and cause their death," he said. "Once we understand how these cells interact, the knowledge may lead to new therapeutic strategies to treat Huntington's disease."

Huntington's disease is a genetic brain disorder that usually strikes in mid-life, but can also attack the elderly and children as young as 2. Slowly depriving a person of their ability to think, speak, walk and swallow, the disease robs the person of their independence, leading to death within 10 to 25 years.

Every carrier of the HD gene mutation will develop the disease. Each child of a parent with Huntington's disease possesses a 50 percent risk of inheriting the illness. In the United States, the disease strikes 30,000 people and places another 150,000 persons at risk. The disorder affects males and females equally and crosses all ethnic and racial boundaries.


'"/>

Source:University of California - Los Angeles


Related biology news :

1. New insights into the software of life
2. Marsupial genome reveals insights into mammalian evolution
3. Frog’s ear canal may provide insights for understanding human hearing loss
4. New insights into neural tube defects
5. Engineered heart tissue offers insights into irregular heartbeats, defibrillator failure
6. AIDS vaccine research offers new insights on survival
7. Mutant mouse provides insights into breast cancer
8. From hot springs to rice farms, scientists reveal new insights into the secret lives of archaea
9. New insights into autoimmunity and depression
10. U. Iowa researchers improve Huntingtons disease symptoms in mice
11. Huntingtons cure in flies lays groundwork for broader treatment approaches
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:4/11/2017)... , April 11, 2017 NXT-ID, ... security technology company, announces the appointment of independent Directors Mr. ... to its Board of Directors, furthering the company,s corporate ... ... NXT-ID, we look forward to their guidance and benefiting from ...
(Date:4/4/2017)...   EyeLock LLC , a leader of iris-based ... Patent and Trademark Office (USPTO) has issued U.S. Patent ... an iris image with a face image acquired in ... 45 th issued patent. "The ... the multi-modal biometric capabilities that have recently come to ...
(Date:3/29/2017)... 29, 2017  higi, the health IT company that ... North America , today announced a Series B ... of EveryMove. The new investment and acquisition accelerates higi,s ... to transform population health activities through the collection and ... higi collects and secures data today on behalf ...
Breaking Biology News(10 mins):
(Date:10/10/2017)... DIEGO, CALIF. (PRWEB) , ... October 10, 2017 , ... ... as part of its corporate rebranding initiative announced today. The bold new look ... its reach, as the company moves into a significant growth period. , It will ...
(Date:10/10/2017)... DALLAS , Oct. 10, 2017 International research firm ... IoT Strategy, will speak at the TMA 2017 Annual Meeting , ... key trends in the residential home security market and how smart safety ... ... "The ...
(Date:10/9/2017)... Oct. 9, 2017  BioTech Holdings announced today ... which its ProCell stem cell therapy prevents limb ... The Company, demonstrated that treatment with ProCell resulted ... saved as compared to standard bone marrow stem ... resulted in reduction of therapeutic effect.  ...
(Date:10/9/2017)... , ... October 09, 2017 ... ... on October 5, 2017, in the medical journal, Epilepsia, Brain Sentinel’s SPEAC® ... gold standard, video EEG, in detecting generalized tonic-clonic seizures (GTCS) using surface ...
Breaking Biology Technology: