Navigation Links
New fruit fly protein illuminates circadian response to light

Researchers at the University of Pennsylvania School of Medicine have identified a new protein required for the circadian response to light in fruit flies. The discovery of this protein ?named JET ?brings investigators one step closer to understanding the process by which the body's internal clock synchronizes to light. Understanding how light affects circadian (24-hour) rhythms will likely open doors to future treatments of jetlag.

The body's 24-hour clock controls a multitude of internal functions such as periods of sleep and wakefulness, body temperature, and metabolism. Although circadian function produces a stable rhythm in the body, the biological clock will reset in response to light. The human condition known as jet lag takes place during the period when the body is attempting to resynchronize to the environmental light changes brought on by travel, namely from one time zone to another.

A mutant fruit fly that possesses jetlag-like behaviors enabled senior author Amita Sehgal, PhD, Professor of Neuroscience at Penn and a Howard Hughes Medical Institute (HHMI) Investigator, and colleagues to identify the gene and subsequent protein that aids in the response of the internal biological clock to light. The researchers report their findings in most recent issue of Science.

To test the circadian rhythm of fruit flies, Sehgal and others exposed wild type (control) and mutant flies to several light and dark settings ?constant darkness, constant light, and equal periods of light and darkness (a light-dark cycle). During exposure to constant light for one week, the controls developed a disrupted sleep pattern after a few days, while the mutants maintained a regular circadian rhythm. The mutant and control flies displayed no behavioral differences during their exposure to constant darkness and the light-dark cycle. However, when the fruit flies were shifted from one light-dark cycle to another, the mutant flies took two days longer to adjust thei r sleep-wake cycle to the new light-dark schedule.

"The behavior of the mutant flies is similar to that displayed in a person who has prolonged jetlag," notes Sehgal. In search of answers to the mutant's defective circadian response to light, Sehgal and colleagues looked to the molecular details of the clock cells in the jetlag flies.

When a fruit fly is exposed to light, a photoreceptor called cryptochrome (CRY) transduces the light signal and kicks off a series of reactions within the clock cells of the brain. Under normal conditions, CRY will respond to light by binding to a protein called timeless (TIM). A second protein, a member of the F-box protein family, also binds to TIM, signaling TIM for cellular destruction.

Genetic analysis revealed that the jetlag flies possess a mutation in a gene that encodes a member of the F-box protein family. A closer examination of the protein produced by the mutated sequence led researchers to JET, a new protein within the F-box protein family.

"Since the degradation of TIM always happens in the presence of light, the animal associates the absence of TIM with daytime hours," explains Sehgal. The mutated JET protein reduces the light-dependent degradation of TIM and the circadian response to light.

Sehgal and others were able to reverse the behaviors in the jetlag flies by genetically replacing the mutated gene sequence with the normal sequence, which led to the production of the wild-type (control) JET protein. When the jetlag flies acquired the normal JET protein, regular TIM degradation took place and the fruit fly was better able to adjust to shifts in the light-dark cycle.

Future studies in the Sehgal lab will focus on continuing to identify other molecules required for the circadian response to light. "Some of the molecules required for the circadian light response in flies may be conserved in humans. Over time, we will have a better understanding of how the human clock res ponds to light and may be able to design drugs to treat jetlag," concludes Sehgal.


'"/>

Source:University of Pennsylvania School of Medicine


Related biology news :

1. Master gene controls healing of skin in fruit flies and mammals
2. UI researcher studies deafness in fruit flies, humans
3. Gap-climbing fruit flies reveal components of goal-driven behaviors
4. Hormones and growth: The control of body size and developmental growth rate in fruit flies
5. Aloe vera coating may prolong freshness, safety of fruits and vegetables
6. Hanging baskets of sex and death help fruit growers
7. Researchers find gland that tells fruit flies when to stop growing
8. Past experience of pheromones induces dominant courtship behavior in fruit flies
9. A resetting signal keeps circadian rhythm on track in Drosophila fruit flies
10. Drunken elephants: The marula fruit myth
11. UCSD study finds anthrax toxins also harmful to fruit flies
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:4/17/2017)... MELBOURNE, Florida , April 17, 2017 ... security technology company, announces the filing of its 2016 Annual Report ... Securities and Exchange Commission. ... Report on Form 10-K is available in the Investor Relations section ... well as on the SEC,s website at http://www.sec.gov . ...
(Date:4/11/2017)... -- Research and Markets has announced the addition of ... offering. ... market to grow at a CAGR of 30.37% during the period ... has been prepared based on an in-depth market analysis with inputs ... growth prospects over the coming years. The report also includes a ...
(Date:4/5/2017)... 5, 2017  The Allen Institute for Cell Science ... a one-of-a-kind portal and dynamic digital window into the ... the first application of deep learning to create predictive ... lines and a growing suite of powerful tools. The ... and future publicly available resources created and shared by ...
Breaking Biology News(10 mins):
(Date:4/28/2017)... ... ... Cynvenio Biosystems, Inc. a leader in personalized medicine technology and ... study in partnership with Allentown, PA-based TME Research . The multi-center registry study ... two years with Cynvenio’s ClearID Breast Cancer blood test. The study goal is to ...
(Date:4/27/2017)... Baltimore, MD (PRWEB) , ... April 27, 2017 ... ... analytics solutions provider for digital pathology, today announced their digital pathology technology has ... Using images provided by five medical centers in The Netherlands as part of ...
(Date:4/27/2017)... ... April 27, 2017 , ... ... flow controllers based on capillary thermal mass flow technology provide exponentially more accurate ... applications. Over 80% of all industrial processes—such as those involving chemical reactions, ...
(Date:4/27/2017)... a distinguished resource for research, development and commercialization of ... Thomas C. Seoh as President and CEO. Mr. Seoh ... becomes Executive Chairman and will continue to serve as ... Thomas Seoh commented, "I am excited and honored ... firm,s remarkable team of life science professionals, all of ...
Breaking Biology Technology: