Navigation Links
New designer lipid-like peptide with lipid nanostructures for drug delivery systems

Scientists from Institute of Biophysics and Nanosystems Research (IBN), Austrian Academy of Sciences and of Centre for Biomedical Engineering, Massachusetts Institute of Technology, Cambridge, USA report the study of “Tuning Curvature and Stability of Monoolein Bilayers by Designer Lipid-Like Peptide Surfactants” in the May 30th issue of the online, open-access journal PLoS ONE. Their findings not only help us to understand the basic science of how lipid-like peptides interact with lipid molecules, but also may provide new strategies for the encapsulation and the delivery of biological active materials. They detailed their findings in the report on the impact of integrating short surfactant-like designer peptides in lipidic nanostructures.

Anan Yaghmur, Michael Rappolt, Peter Laggner and Shuguang Zhang reported the formations of dynamic nanostructures of lipid-like peptides that are like two-headed Janus, both water-loving and water-hating, which represent a new class of designer materials using common amino acids, the same basic molecules from meat, beans and fruits. These lipid-like peptides have excellent potential to solubilize membrane proteins and enzymes, and - as now demonstrated - can also be utilized to stabilize different self-assembled liquid crystalline nanostructures. Moreover, the surface charge density of lipidic nanostructures can be varied in a simple manner.

Dr. Anan Yaghmur, first author of the study, comments on the study, “the addition of small amounts of designer lipid-like peptides is sufficient to form systems with excellent potential for various biotechnological applications such as the encapsulation of water-insoluble drugs and the delivery of biological active materials.”

Currently, many anticancer drugs are difficult to deliver to patients due to their difficulty to be soluble in water. “This is a systematic study to combine with lipid molecules,” Shuguang Zhang of MIT, a co-author said, “people ha ve been curious about if these similar molecules can interact. This study provided the first answer”. “Since these lipid-like peptides can be designed, just like to design an elegant watch, an art object, a music instrument, a ski, or a pair of sunglasses, we have the ultimate control to the outcome of the structure and their properties” Zhang added.

This study stemmed from a scientific visit by Peter Laggner to Shuguang Zhang at MIT in Cambridge, USA in May 2006. They shared some ideas and decided to collaborate since Laggner is a world-expert on nanostructure using small angle X-ray scattering and Zhang can provide the designer lipid-like peptides that he has been studied since 2000.

In the near future, many colloidal aqueous dispersions, which are similar to milk and some paints, with confined inner nanostructures, will offer unique characteristics like high drug load capacities and low viscosity. Here these designer lipid-like peptides may play a key role in improving effective drug delivery systems.
'"/>

Source:Public Library of Science


Related biology news :

1. Mouse with designer liver has enhanced glucose tolerance, insulin response
2. Two designer drugs hit same lung cancer target, but only one is effective
3. Product improves peptide identification for proteomics research
4. Discovery clarifies role of peptide in biological clock
5. Frog peptides block HIV in lab study
6. New peptide antibiotic isolated from American oyster
7. Defense peptide found in primates may block some human HIV transmissions
8. Scientists identify 36 genes, 100 neuropeptides in honey bee brains
9. Does a peptide affect the hearts response to social isolation?
10. Synthetic peptide targets latent papilloma virus infections
11. UCLA AIDS Institute researchers find a peptide that encourages HIV infection

Post Your Comments:
*Name:
*Comment:
*Email:


(Date:4/5/2017)...  The Allen Institute for Cell Science today announces ... portal and dynamic digital window into the human cell. ... application of deep learning to create predictive models of ... a growing suite of powerful tools. The Allen Cell ... publicly available resources created and shared by the Allen ...
(Date:4/3/2017)... 3, 2017  Data captured by IsoCode, ... detected a statistically significant association between the ... treatment and objective response of cancer patients ... predict whether cancer patients will respond to ... well as to improve both pre-infusion potency testing ...
(Date:3/29/2017)... 29, 2017  higi, the health IT company that ... North America , today announced a Series B ... of EveryMove. The new investment and acquisition accelerates higi,s ... to transform population health activities through the collection and ... higi collects and secures data today on behalf ...
Breaking Biology News(10 mins):
(Date:5/26/2017)... ... May 25, 2017 , ... LabRoots , the leading provider of scientific ... the world, is announcing a new textbook scholarship, the second scholarship in the LabRoots ... 17 years or older, pursuing a degree in one of the life sciences. The ...
(Date:5/24/2017)... ... May 23, 2017 , ... Federal funding for basic and applied scientific ... life-saving medical and other vital technologies — deserves continued support, say leaders of ... scientific community today in responding to the President’s budget request for Fiscal Year 2018. ...
(Date:5/23/2017)... (PRWEB) , ... May 23, 2017 , ... A recent ... the most troublesome and difficult to control weed in 12 categories of broadleaf crops, ... Almost 200 weed scientists across the U.S. and Canada participated in the 2016 survey, ...
(Date:5/23/2017)... , ... May 22, 2017 , ... ... Photonics 2017 in San Diego, California, this August will feature high-level speakers ... and autonomous vehicles. , SPIE Optics and Photonics, the largest multidisciplinary optical sciences ...
Breaking Biology Technology: