Navigation Links
New Study from Affymetrix Laboratories Points to Changing View of How Genome Works

Scientists at Affymetrix, Inc. (Nasdaq: AFFX) reported today in Science magazine online that they have completed a high-resolution scan of structure and function for nearly 30 percent of the human genome sequence. In collaboration with the National Cancer Institute, the research team used high-density GeneChip(R) microarrays to study every fifth base, on average, of 10 human chromosomes; they found that thousands of regions of the genome are transcribed into overlapping RNA sequences and those sequences are separated by regions in which RNA is transcribed more scarcely. All of the data is freely available.

"The findings of this study compel us to reconsider how the genome is organized and regulated," said Thomas Gingeras, Vice President for Biological Research at Affymetrix and senior author of the Science manuscript. "These data point us toward two critical and exciting questions: What are the functions of these previously unannotated transcripts and what are the regulation schemes that orchestrate such complex assemblies of transcription? It seems certain that this is not the genome we learned about while in school."

In the "traditional" view of the human genome, there are about 26,000 genes used to make proteins that ultimately control the structure and function of every cell in the body. Most disease research has focused on studying these protein-coding genes, even though they make up only about two percent of the human genome sequence.

The new study by Gingeras' team did not make any assumption of what parts of the genome might or might not be important to human biology. They used new Affymetrix tiling microarrays and unique biochemical tests to scan the sequence of 10 human chromosomes -- one third of the human genome sequence -- and found that roughly 15 percent of the DNA sequence analyzed was tran scribed; most sites of transcription were not located in areas associated with protein-coding genes.

The team found many diverse kinds of RNAs transcribed from distinct regions of the genome, creating a complex pool of overlapping transcription. While the team validated many known protein-coding transcripts that contribute to this complex pool, they also discovered that:

Seventy-five percent of all of the RNA that were exclusively found in the nucleus had not been previously detected.
Any single base in the genome can be transcribed into several different transcripts with different, but overlapping sequences. Often, transcripts from one strand of DNA can share parts of their sequence with overlapping transcripts from the same strand or even from the opposite strand (antisense).
Transcripts missing a run of adenosine nucleotides (non-polyA) at the tail-end were twice as common as the more well-studied RNAs that have this sequence. Most transcripts derived from the sparsely transcribed regions between centers of dense transcription are non-polyA transcripts.

This study focused on an in depth scan of 10 chromosomes; however, Affymetrix has developed tiling microarrays that cover all human chromosomes. GeneChip tiling microarrays have been used by Gingeras and his collaborators, as well as the NHGRI publicly funded ENCODE project, to study the human genome in an unbiased fashion -- including regions that have historically been termed coding and non-coding.

Affymetrix is now beginning to commercialize tiling microarrays to give the research community the ability to perform these types of unbiased studies as well. By focusing research beyond the parts of the genome that have been traditionally studied, scientists hope to discover new drug targets, new biomarkers, and a better understanding of disease mechanism.

This project has been funded in whole or in part with Federal Funds from the National Cancer Institute, National Institutes of Health, under Contract number N01-CO-12400.

About Tiling Arrays:

Affymetrix "tiling" arrays mark a shift in the way microarrays are designed and interpreted. By using a neutral approach to array design, tiling arrays include all non-repetitive sequence from a given genome, not just the hand-selected regions that were previously thought to be important. With the inclusion of all genomic sequences, microarrays can now be used as a discovery tool to generate annotations and discover new transcripts. In late 2005, Affymetrix plans to launch high-resolution tiling arrays for the entire human genome and several model organisms, including Drosophila, Arabidopsis, S. cerevisiae and S. pombe.

Further Information:

Using GeneChip(R) technology to study all human transcripts (Transcriptome)

Using Affymetrix tiling arrays in the ENCODE project

Using tiling arrays to discover new transcripts in Arabidopsis

Using tiling arrays to map new human transcription factor binding sites



Related biology news :

1. Novel Asthma Study Shows Multiple Genetic Input Required; Single-gene Solution Shot Down
2. Emory Study Tests Bone Marrow Stem Cells to Improve Circulation in Legs
3. UCLA Study Shows One-Third of Drug Ads in Medical Journals Do Not Contain References Supporting Medical Claims
4. Study Demonstrates Gene Expression Microarrays are Comparable and Reproducible
5. Study Links Ebola Outbreaks To Animal Carcasses
6. Breakthrough Microarray-based Technology for the Study of Cancer
7. NYU Study Reveals How Brains Immune System Fights Viral Encephalitis
8. Study finds more than one-third of human genome regulated by RNA
9. Leukemia Drug Breakthrough Study In New England Journal Of Medicine
10. Study identifies predictors of HIV drug resistance in patients beginning triple therapy
11. Study: Soap And Water Work Best In Ridding Hands Of Disease Viruses
Post Your Comments:

(Date:11/18/2015)... , Nov. 18, 2015  As new scientific discoveries ... doctors and other healthcare providers face challenges in better ... and patients. In addition, as more children continue to ... patient,s adulthood and old age. John M. ... Children,s Hospital of Philadelphia (CHOP) . --> ...
(Date:11/17/2015)... 2015 Paris , ... --> Paris , qui s,est tenu ... le leader de l,innovation biométrique, a inventé le premier ... empreintes sur la même surface de balayage. Jusqu,ici, deux ... pour les empreintes digitales. Désormais, un seul scanner est ...
(Date:11/16/2015)... Nov 16, 2015  Synaptics Inc. (NASDAQ: ... solutions, today announced expansion of its TDDI product ... touch controller and display driver integration (TDDI) solutions ... These new TDDI products add to the previously-announced ... TD4302 (WQHD resolution), and TD4322 (FHD resolution) solutions. ...
Breaking Biology News(10 mins):
(Date:11/24/2015)... ... November 24, 2015 , ... International Society for Pharmaceutical Engineering ... premier annual events for pharmaceutical manufacturing: 2015 Annual Meeting. The conference took place ... the largest number of attendees in more than a decade. , “The ...
(Date:11/24/2015)... N.C. , Nov. 24, 2015  Clintrax Global, Inc., a ... North Carolina , today announced that the company has set ... represented a 391% quarter on quarter growth posted for Q3 of ... and Mexico , with the establishment ... in December 2015. --> United Kingdom ...
(Date:11/24/2015)... ... November 24, 2015 , ... This fall, global software solutions leader SAP and ... to develop and pitch their BIG ideas to improve health and wellness in their ... votes to win the title of SAP's Teen Innovator, an all-expenses paid trip to ...
(Date:11/24/2015)... -- SHPG ) announced today that Jeff Poulton ... th Annual Healthcare Conference in New York City ... EST (1:30 p.m. GMT). --> SHPG ) announced today ... the Piper Jaffray 27 th Annual Healthcare Conference in ... 2015, at 8:30 a.m. EST (1:30 p.m. GMT). --> ...
Breaking Biology Technology: