Navigation Links
New MRI technique quickly builds 3-D images of knees

A faster magnetic resonance imaging (MRI) data-acquisition technique will cut the time many patients spend in a cramped magnetic resonance scanner, yet deliver more precise 3-D images of their bodies.

Developed at the University of Wisconsin-Madison, the faster technique will enable clinics to image more patients - particularly the burgeoning group of older adults with osteoarthritis-related knee problems - and can help researchers more rapidly assess new treatments for such conditions.

Magnetic resonance has long been touted as the ideal method for capturing 3-D images of the human body. "But unfortunately, it is kind of a slow technique," says Walter Block, an associate professor of biomedical engineering and medical physics. "You can only sample a few pieces of information needed to build the image at a time."

Consequently, most magnetic resonance technicians acquire images as a series of 2-D slices, which yield high resolution in a single plane and poor resolution in the remaining direction, he says.

To capture an image, a magnetic resonance scanner commonly conducts hundreds to thousands of little "experiments," or encodings, that help to make up the big picture. Block's data-acquisition technique capitalizes on recent magnetic resonance hardware advances that, coupled with a novel way of maintaining a high-level magnetic resonance signal throughout the scan, will speed an MRI session. "But to maintain the high-level signal," he says," you need to be able to complete each of these smaller encodings within a couple of milliseconds."

Rather than using the conventional approach, which sweeps horizontally to gather magnetic resonance data, Block's technique acquires the body's signals radially, in a way that looks somewhat like a toy Koosh ball. "We can essentially acquire data during the whole experiment, where in the (conventional) case, a lot of time was spent either prepping for the experiment or returning it to the steady state so that you could do the next experiment," Block says. "What we're doing now is capable of a study that you can visualize in any plane in about the same time as people are doing one plane."

For example, when imaging a joint like the knee - Block's inspiration for developing the new technique - suppressing the fat signal in bone provides image contrast between bone and the cartilage surface. The conventional data-acquisition method would spend half its scan time suppressing the signal from fat, instead of imaging cartilage. However, Block's technique exploits the difference in resonant frequencies between fat and water. During the scan time, then, the technique maximizes each component of the image, so that a technician can view any aspect.

High-resolution 3-D images are important not only from diagnostic and clinical standpoints, but also to help patients better understand their health conditions, says Block. "If you could actually look at a 3-D model from different perspectives, you'd have a much better chance to make sense of the pain you're feeling, your doctor's diagnosis and your treatment options," he says.

The technique, which Block patented through the Wisconsin Alumni Research Foundation, also will make it easier to image parts of the body, such as the heart or abdomen, in which motion is a factor.


'"/>

Source:University of Wisconsin-Madison


Related biology news :

1. New lab technique identifies high levels of pathogens in therapy pool
2. Brain-mapping technique aids understanding of sleep, wakefulness
3. Study reveals new technique for fingerprinting environmental samples
4. Researchers pioneer new gene therapy technique using natural repair process
5. Newer imaging techniques may lead to over-treatment
6. Gene silencing technique offers new strategy for treating, curing disease
7. Mosaic mouse technique offers a powerful new tool to study diseases and genetics
8. Researchers devise new technique for creating human stem cells
9. New technique rapidly detects illness-causing bacteria
10. New bioinformatics technique for systematically analyzing key regions in DNA that help control gene activity
11. New technique may speed DNA analysis
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:6/16/2016)... June 16, 2016 The ... expected to reach USD 1.83 billion by 2024, ... Research, Inc. Technological proliferation and increasing demand in ... expected to drive the market growth. ... The development of advanced multimodal techniques for ...
(Date:6/3/2016)... LONDON , June 3, 2016 /PRNewswire/ ... Transport Management) von Nepal ... ,Angebot und Lieferung hochsicherer geprägter Kennzeichen, einschließlich ... weltweit führend in der Produktion und Implementierung ... an der Ausschreibung im Januar teilgenommen, aber ...
(Date:5/24/2016)... Ampronix facilitates superior patient care by providing unparalleled technology to leaders of the medical ... premium product recently added to the range of products distributed by Ampronix. ... ... ... Ampronix News ...
Breaking Biology News(10 mins):
(Date:6/22/2016)... Research and Markets has announced the addition of the ... The global biomarkers market has ... The market is expected to grow at a five-year compound annual ... $50.6 billion in 2015 to $96.6 billion in 2020. ... to 2020) are discussed. As well, new products approved in 2013 ...
(Date:6/22/2016)... LOS ANGELES , June 22, 2016   ... an SNNLive Video Interview with Dr. Nader Pourhassan ... a biotechnology company focused on the clinical development and ... and prevention of HIV infection, according to the company,s ... was recorded on Tuesday, June 7 th , 2016, ...
(Date:6/22/2016)... DIEGO , June 22, 2016   ViaCyte, ... first pluripotent stem cell-derived islet replacement therapy for the ... presentations at ISSCR 2016 Annual Meeting.  ISSCR 2016, the ... to 25th at Moscone West in San Francisco.  ... of the presentations are as follows:Event: , Focus Session: ...
(Date:6/22/2016)... (PRWEB) , ... June 22, 2016 , ... ... at placing a spotlight on immigrant achievements and contributions to North Texas and ... most important contributors from the immigrant community to the civic and economic vitality ...
Breaking Biology Technology: