Navigation Links
Neurons grown from embryonic stem cells restore function in paralyzed rats

For the first time, researchers have enticed transplants of embryonic stem cell-derived motor neurons in the spinal cord to connect with muscles and partially restore function in paralyzed animals. The study suggests that similar techniques may be useful for treating such disorders as spinal cord injury, transverse myelitis, amyotrophic lateral sclerosis (ALS), and spinal muscular atrophy. The study was funded in part by the NIH's National Institute of Neurological Disorders and Stroke (NINDS).

The researchers, led by Douglas Kerr, M.D., Ph.D., of The Johns Hopkins University School of Medicine, used a combination of transplanted motor neurons, chemicals capable of overcoming signals that inhibit axon growth, and a nerve growth factor to attract axons to muscles. The report is published in the July 2006 issue of Annals of Neurology.*

"This work is a remarkable advance that can help us understand how stem cells might be used to treat injuries and disease and begin to fulfill their great promise. The successful demonstration of functional restoration is proof of the principle and an important step forward. We must remember, however, that we still have a great distance to go," says Elias A. Zerhouni, Director of the National Institutes of Health.

"This study provides a 'recipe' for using stem cells to reconnect the nervous system," says Dr. Kerr. "It raises the notion that we can eventually achieve this in humans, although we have a long way to go."

In the study, Dr. Kerr and his colleagues cultured embryonic stem cells from mice with chemicals that caused them to differentiate into motor neurons. Just before transplantation, they added three nerve growth factors to the culture medium. Most of the cells were also cultured with a substance called dibutyrl cAMP (dbcAMP) that helps to overcome axon-inhibiting signals from myelin, the substance that insulates nerve fibers in the spinal cord.

The cells were transplanted into eight g roups of paralyzed rats. Each group received a different combination of treatments. Some groups received injections of a drug called rolipram under the skin before and after the transplants. Rolipram, a drug approved to treat depression, helps to counteract axon-inhibiting signals from myelin. Some animals also received transplants of neural stem cells that secreted the nerve growth factor GDNF into the sciatic nerve (the sciatic nerve extends from the spine down the back of the hind leg). GDNF causes axons to grow toward it.

Three months after the transplants, the investigators examined the rats for signs that the stem cell-derived neurons had survived and integrated with the nervous system. The rats that had received the full cocktail of treatments ?transplanted motor neurons, rolipram, dbcAMP, and GDNF-secreting neural stem cells in the sciatic nerve ?had several hundred transplant-derived axons extending into the peripheral nervous system, more than in any other group. The axons in these animals reached all the way to the gastrocnemius muscle in the lower leg and formed functional connections, called synapses, with the muscle. The rats showed an increase in the number of functioning motor neurons and an approximately 50 percent improvement in hind limb grip strength by 4 months after transplantation. In contrast, none of the rats given other combinations of treatments recovered lost function.

"We found that we needed a combination of all of the treatments in order to restore function," Dr. Kerr says.

Follow-up experiments with GDNF treatment on only one side of the body showed that, by 6 months after treatment, 75 percent of rats given the full combination of treatments regained the ability to bear weight on the GDNF-treated limbs and to take steps and push away with the foot on that side of the body.

"This research represents significant progress," says David Owens, Ph.D., the NINDS program director for the grant that funded t he work. "It is a convergence of embryonic stem cell research with other areas of research that we've funded, including work that uses combination therapies such as rolipram and dbcAMP, growth factors, and cells to facilitate the repair of the injured spinal cord."

Previous studies have shown that stem cells can halt spinal motor neuron degeneration and restore function in animals with spinal cord injury or ALS. However, this study is the first to show that transplanted neurons can form functional connections with the adult mammalian nervous system, the researchers say. They used both electrophysiological and behavioral studies to verify that the recovery was due to connections between the peripheral nervous system and the transplanted neurons.

"We've previously shown that stem cells can protect at-risk neurons, but in ongoing neurodegenerative diseases, there is a very small window of time to do so. After that, there is nothing left to protect," says Dr. Kerr. "To overcome the loss of function, we need to actually replace lost neurons."

While these results are promising, much work remains before a similar strategy could be tried in humans, Dr. Kerr says. The therapy must first be tested in larger animals to determine if the nerves can reconnect over longer distances and to make sure the treatments are safe. There currently is no large-animal model for motor neuron degeneration, so Dr. Kerr's group is working to develop a pig model. Researchers also need to test human embryonic stem cells to learn if they will work in the same way as the mouse cells. It has only recently become possible to grow motor neurons from human embryonic stem cells, Dr. Kerr adds. However, if the future studies go well, this type of therapy might eventually be useful for spinal muscular atrophy, ALS, and other motor neuron diseases.

*Deshpande D, Kim YS, Martinez T, Carmen J, Dike S, Shats I, Rubin L, Drummond J, Krishnan C, Hoke A, Maragakis N, Shefner J, Ro thstein J, Kerr D. "Recovery from Paralysis in Adult Rats Using Embryonic Stem Cells." Annals of Neurology, July 2006, Vol. 60, No. 1, pp. 22-34.


'"/>

Source:NIH/National Institute of Neurological Disorders and Stroke


Related biology news :

1. Neurons generated in the adult brain learn to respond to novel stimuli
2. Neurons find their place in the developing nervous system with the help of a sticky molecule
3. Stem cells grown in lab mirror normal developmental steps
4. New complete muscle grown in the lab
5. Effective, safe anthrax vaccine can be grown in tobacco plants
6. Human prostate grown from embryonic stem cells
7. Scientists map air pollution using corn grown in US fields
8. Bypassing eggs, flu vaccine grown in insect cells shows promise
9. Priming embryonic stem cells to fulfill their promise
10. Current human embryonic stem cell lines contaminated UCSD/Salk team finds
11. Researchers devise way to mass-produce embryonic stem cells
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:4/15/2016)... CHICAGO , April 15, 2016  A ... companies make more accurate underwriting decisions in a ... offering timely, competitively priced and high-value life insurance ... health screenings. With Force Diagnostics, rapid ... and lifestyle data readings (blood pressure, weight, pulse, ...
(Date:3/31/2016)... PROVIDENCE, R.I. , March 31, 2016  Genomics ... leadership of founding CEO, Barrett Bready , M.D., ... addition, members of the original technical leadership team, including ... Vice President of Product Development, Steve Nurnberg and Vice ... have returned to the company. Dr. Bready ...
(Date:3/21/2016)... 2016 Unique technology combines ... superior security   Xura, Inc. ... secure digital communications services, today announced it is working ... enterprise customers, particularly those in the Financial Services Sector, ... authentication within a mobile app, alongside, and in combination ...
Breaking Biology News(10 mins):
(Date:5/2/2016)... ... May 02, 2016 , ... StarNet Communications Corp, ( http://www.starnet.com/ ) a ... three Secure Remote Desktop modules to its flagship X-Win32 PC X server. The ... servers to the user’s PC over encrypted SSH. , Traditionally, users of PC X ...
(Date:4/29/2016)... ... April 29, 2016 , ... ... in spinal surgical procedures, today announced the completion of a significant transaction and ... current and future customers and partners. Kohlberg & Company, L.L.C. (“Kohlberg”), a ...
(Date:4/29/2016)... , ... April 29, 2016 , ... Intelligent Implant Systems ... the FDA via 510(k) for sale in the United States. These components expand ... thoraco-lumbar fusions. With one-level sales beginning in October of 2015, the company has ...
(Date:4/28/2016)... ... April 28, 2016 , ... Connecticut Innovations ... companies, today announced the launch of VentureClash , a $5 million global ... , “VentureClash looks to attract the best early-stage companies here in Connecticut, around ...
Breaking Biology Technology: